Effects of growth hormone–releasing hormone on cognitive function in adults with mild cognitive impairment and healthy older adults: results of a controlled trial.
Laura D Baker, Suzanne M Barsness, Soo Borson, George R Merriam, Seth D Friedman, Suzanne Craft, Michael V Vitiello
{"title":"Effects of growth hormone–releasing hormone on cognitive function in adults with mild cognitive impairment and healthy older adults: results of a controlled trial.","authors":"Laura D Baker, Suzanne M Barsness, Soo Borson, George R Merriam, Seth D Friedman, Suzanne Craft, Michael V Vitiello","doi":"10.1001/archneurol.2012.1970","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Growth hormone–releasing hormone(GHRH), growth hormone, and insulin like growth factor 1 have potent effects on brain function, their levels decrease with advancing age, and they likely play a role in the pathogenesis of Alzheimer disease. Previously, we reported favorable cognitive effects of short-term GHRH administration in healthy older adults and provided preliminary evidence to suggest a similar benefit in adults with mild cognitive impairment (MCI).</p><p><strong>Objective: </strong>To examine the effects of GHRH on cognitive function in healthy older adults and in adults with MCI.</p><p><strong>Design: </strong>Randomized,double-blind,placebo-controlled trial.</p><p><strong>Setting: </strong>Clinical Research Center, University of Washington School of Medicine in Seattle.</p><p><strong>Participants: </strong>A total of 152 adults (66 with MCI) ranging in age from 55 to 87 years (mean age, 68 years); 137 adults (76 healthy participants and 61 participants with MCI) successfully completed the study.</p><p><strong>Intervention: </strong>Participants self-administered daily subcutaneous injections of tesamorelin (Theratechnologies Inc),a stabilized analog of human GHRH (1 mg/d), or placebo 30 minutes before bedtime for 20 weeks. At baseline, at weeks 10 and 20 of treatment, and after a 10-week washout(week 30), blood samples were collected, and parallel versions of a cognitive battery were administered. Before and after the 20-week intervention, participants completed an oral glucose tolerance test and a dual-energy x-ray absorptiometry scan to measure body composition.</p><p><strong>Main outcome measures: </strong>Primary cognitive outcomes were analyzed using analysis of variance and included 3 composites reflecting executive function, verbal memory, and visual memory. Executive function was assessed with Stroop Color-Word Interference,Task Switching, the Self-Ordered Pointing Test, and Word Fluency, verbal memory was assessed with Story Recall and the Hopkins Verbal Learning Test,and visual memory was assessed with the Visual-Spatial Learning Test and Delayed Match-to-Sample.</p><p><strong>Results: </strong>The intent-to-treat analysis indicated a favorable effect of GHRH on cognition (P=.03), which was comparable in adults with MCI and healthy older adults.The completer analysis showed a similar pattern, with a more robust GHRH effect (P=.002). Subsequent analyses indicated a positive GHRH effect on executive function (P=.005) and a trend showing a similar treatment-related benefit in verbal memory(P=.08). Treatment with GHRH increased insulin like growth factor 1 levels by 117 %(P.001), which remained within the physiological range, and reduced percent body fat by 7.4%(P.001). Treatment with GHRH increased fasting insulin levels within the normal range by 35%in adults with MCI (P.001) but not in healthy adults. Adverse events were mild and were reported by 68%of GHRH treated adults and 36% of those who received placebo.</p><p><strong>Conclusions: </strong>Twenty weeks of GHRH administration had favorable effects on cognition in both adults with MCI and healthy older adults. Longer-duration treatment trials are needed to further examine the therapeutic potential of GHRH administration on brain health during normal aging and “pathological aging.”</p><p><strong>Trial registration: </strong>clinicaltrials.gov Identifier: NCT00257712</p>","PeriodicalId":8321,"journal":{"name":"Archives of neurology","volume":"69 11","pages":"1420-9"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1001/archneurol.2012.1970","citationCount":"105","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of neurology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1001/archneurol.2012.1970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 105
Abstract
Background: Growth hormone–releasing hormone(GHRH), growth hormone, and insulin like growth factor 1 have potent effects on brain function, their levels decrease with advancing age, and they likely play a role in the pathogenesis of Alzheimer disease. Previously, we reported favorable cognitive effects of short-term GHRH administration in healthy older adults and provided preliminary evidence to suggest a similar benefit in adults with mild cognitive impairment (MCI).
Objective: To examine the effects of GHRH on cognitive function in healthy older adults and in adults with MCI.
Setting: Clinical Research Center, University of Washington School of Medicine in Seattle.
Participants: A total of 152 adults (66 with MCI) ranging in age from 55 to 87 years (mean age, 68 years); 137 adults (76 healthy participants and 61 participants with MCI) successfully completed the study.
Intervention: Participants self-administered daily subcutaneous injections of tesamorelin (Theratechnologies Inc),a stabilized analog of human GHRH (1 mg/d), or placebo 30 minutes before bedtime for 20 weeks. At baseline, at weeks 10 and 20 of treatment, and after a 10-week washout(week 30), blood samples were collected, and parallel versions of a cognitive battery were administered. Before and after the 20-week intervention, participants completed an oral glucose tolerance test and a dual-energy x-ray absorptiometry scan to measure body composition.
Main outcome measures: Primary cognitive outcomes were analyzed using analysis of variance and included 3 composites reflecting executive function, verbal memory, and visual memory. Executive function was assessed with Stroop Color-Word Interference,Task Switching, the Self-Ordered Pointing Test, and Word Fluency, verbal memory was assessed with Story Recall and the Hopkins Verbal Learning Test,and visual memory was assessed with the Visual-Spatial Learning Test and Delayed Match-to-Sample.
Results: The intent-to-treat analysis indicated a favorable effect of GHRH on cognition (P=.03), which was comparable in adults with MCI and healthy older adults.The completer analysis showed a similar pattern, with a more robust GHRH effect (P=.002). Subsequent analyses indicated a positive GHRH effect on executive function (P=.005) and a trend showing a similar treatment-related benefit in verbal memory(P=.08). Treatment with GHRH increased insulin like growth factor 1 levels by 117 %(P.001), which remained within the physiological range, and reduced percent body fat by 7.4%(P.001). Treatment with GHRH increased fasting insulin levels within the normal range by 35%in adults with MCI (P.001) but not in healthy adults. Adverse events were mild and were reported by 68%of GHRH treated adults and 36% of those who received placebo.
Conclusions: Twenty weeks of GHRH administration had favorable effects on cognition in both adults with MCI and healthy older adults. Longer-duration treatment trials are needed to further examine the therapeutic potential of GHRH administration on brain health during normal aging and “pathological aging.”