{"title":"Microglia in development: linking brain wiring to brain environment.","authors":"Rosa C Paolicelli, Cornelius T Gross","doi":"10.1017/S1740925X12000105","DOIUrl":null,"url":null,"abstract":"<p><p>Microglia are enigmatic non-neuronal cells that infiltrate and take up residence in the brain during development and are thought to perform a surveillance function. An established literature has documented how microglia are activated by pathogenic stimuli and how they contribute to and resolve injuries to the brain. However, much less work has been aimed at understanding their function in the uninjured brain. A series of recent in vivo imaging studies shows that microglia in their resting state are highly motile and actively survey their neuronal surroundings. Furthermore, new data suggest that microglia in their resting state are able to phagocytose unwanted synapses and in this way contribute to synaptic pruning and maturation during development. Coupled with their exquisite sensitivity to pathogenic stimuli, these data suggest that microglia form a link that couples changes in brain environment to changes in brain wiring. Here we discuss this hypothesis and propose a model for the role of microglia during development in sculpting brain connectivity.</p>","PeriodicalId":19153,"journal":{"name":"Neuron glia biology","volume":"7 1","pages":"77-83"},"PeriodicalIF":0.0000,"publicationDate":"2011-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S1740925X12000105","citationCount":"109","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron glia biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S1740925X12000105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 109
Abstract
Microglia are enigmatic non-neuronal cells that infiltrate and take up residence in the brain during development and are thought to perform a surveillance function. An established literature has documented how microglia are activated by pathogenic stimuli and how they contribute to and resolve injuries to the brain. However, much less work has been aimed at understanding their function in the uninjured brain. A series of recent in vivo imaging studies shows that microglia in their resting state are highly motile and actively survey their neuronal surroundings. Furthermore, new data suggest that microglia in their resting state are able to phagocytose unwanted synapses and in this way contribute to synaptic pruning and maturation during development. Coupled with their exquisite sensitivity to pathogenic stimuli, these data suggest that microglia form a link that couples changes in brain environment to changes in brain wiring. Here we discuss this hypothesis and propose a model for the role of microglia during development in sculpting brain connectivity.