Incorporating the empirical null hypothesis into the Benjamini-Hochberg procedure.

Pub Date : 2012-07-26 DOI:10.1515/1544-6115.1735
Debashis Ghosh
{"title":"Incorporating the empirical null hypothesis into the Benjamini-Hochberg procedure.","authors":"Debashis Ghosh","doi":"10.1515/1544-6115.1735","DOIUrl":null,"url":null,"abstract":"<p><p>For the problem of multiple testing, the Benjamini-Hochberg (B-H) procedure has become a very popular method in applications. We show how the B-H procedure can be interpreted as a test based on the spacings corresponding to the p-value distributions. This interpretation leads to the incorporation of the empirical null hypothesis, a term coined by Efron (2004). We develop a mixture modelling approach for the empirical null hypothesis for the B-H procedure and demonstrate some theoretical results regarding both finite-sample as well as asymptotic control of the false discovery rate. The methodology is illustrated with application to two high-throughput datasets as well as to simulated data.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2012-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/1544-6115.1735","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/1544-6115.1735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

For the problem of multiple testing, the Benjamini-Hochberg (B-H) procedure has become a very popular method in applications. We show how the B-H procedure can be interpreted as a test based on the spacings corresponding to the p-value distributions. This interpretation leads to the incorporation of the empirical null hypothesis, a term coined by Efron (2004). We develop a mixture modelling approach for the empirical null hypothesis for the B-H procedure and demonstrate some theoretical results regarding both finite-sample as well as asymptotic control of the false discovery rate. The methodology is illustrated with application to two high-throughput datasets as well as to simulated data.

分享
查看原文
将经验零假设纳入Benjamini-Hochberg程序。
针对多重测试问题,benjamin - hochberg (B-H)法已成为应用中非常流行的一种方法。我们展示了如何将B-H过程解释为基于与p值分布对应的间隔的检验。这种解释导致了经验零假设的结合,这是Efron(2004)创造的一个术语。我们为B-H过程的经验零假设开发了一种混合建模方法,并证明了关于有限样本和错误发现率渐近控制的一些理论结果。通过对两个高通量数据集以及模拟数据的应用说明了该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信