{"title":"Incorporating the empirical null hypothesis into the Benjamini-Hochberg procedure.","authors":"Debashis Ghosh","doi":"10.1515/1544-6115.1735","DOIUrl":null,"url":null,"abstract":"<p><p>For the problem of multiple testing, the Benjamini-Hochberg (B-H) procedure has become a very popular method in applications. We show how the B-H procedure can be interpreted as a test based on the spacings corresponding to the p-value distributions. This interpretation leads to the incorporation of the empirical null hypothesis, a term coined by Efron (2004). We develop a mixture modelling approach for the empirical null hypothesis for the B-H procedure and demonstrate some theoretical results regarding both finite-sample as well as asymptotic control of the false discovery rate. The methodology is illustrated with application to two high-throughput datasets as well as to simulated data.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2012-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/1544-6115.1735","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/1544-6115.1735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24
Abstract
For the problem of multiple testing, the Benjamini-Hochberg (B-H) procedure has become a very popular method in applications. We show how the B-H procedure can be interpreted as a test based on the spacings corresponding to the p-value distributions. This interpretation leads to the incorporation of the empirical null hypothesis, a term coined by Efron (2004). We develop a mixture modelling approach for the empirical null hypothesis for the B-H procedure and demonstrate some theoretical results regarding both finite-sample as well as asymptotic control of the false discovery rate. The methodology is illustrated with application to two high-throughput datasets as well as to simulated data.