{"title":"Estimating the number of one-step beneficial mutations.","authors":"Andrzej J Wojtowicz, Craig R Miller, Paul Joyce","doi":"10.1515/1544-6115.1788","DOIUrl":null,"url":null,"abstract":"<p><p>Mutations that confer a selective advantage to an organism are the raw material upon which natural selection acts. The number of such mutations that are available is a central quantity of interest for understanding the tempo and trajectory of adaptive evolution. While this quantity is typically unknown, it can be estimated with varying levels of accuracy based on data obtained experimentally. We propose a method for estimating the number of beneficial mutations that accounts for the evolutionary forces that generate the data. Our model-based parametric approach is compared to an adjusted nonparametric abundance-based coverage estimator. We show that, in general, our estimator performs better. When the number of mutations is small, however, the performances of the two estimators are similar.</p>","PeriodicalId":48980,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":"11 4","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2012-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/1544-6115.1788","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Applications in Genetics and Molecular Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/1544-6115.1788","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mutations that confer a selective advantage to an organism are the raw material upon which natural selection acts. The number of such mutations that are available is a central quantity of interest for understanding the tempo and trajectory of adaptive evolution. While this quantity is typically unknown, it can be estimated with varying levels of accuracy based on data obtained experimentally. We propose a method for estimating the number of beneficial mutations that accounts for the evolutionary forces that generate the data. Our model-based parametric approach is compared to an adjusted nonparametric abundance-based coverage estimator. We show that, in general, our estimator performs better. When the number of mutations is small, however, the performances of the two estimators are similar.
期刊介绍:
Statistical Applications in Genetics and Molecular Biology seeks to publish significant research on the application of statistical ideas to problems arising from computational biology. The focus of the papers should be on the relevant statistical issues but should contain a succinct description of the relevant biological problem being considered. The range of topics is wide and will include topics such as linkage mapping, association studies, gene finding and sequence alignment, protein structure prediction, design and analysis of microarray data, molecular evolution and phylogenetic trees, DNA topology, and data base search strategies. Both original research and review articles will be warmly received.