{"title":"Testing clonality of three and more tumors using their loss of heterozygosity profiles.","authors":"Irina Ostrovnaya","doi":"10.1515/1544-6115.1757","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer patients often develop multiple malignancies that may be either metastatic spread of a previous cancer (clonal tumors) or new primary cancers (independent tumors). If diagnosis cannot be easily made on the basis of the pathology review, the patterns of somatic mutations in the tumors can be compared. Previously we have developed statistical methods for testing clonality of two tumors using their loss of heterozygosity (LOH) profiles at several candidate markers. These methods can be applied to all possible pairs of tumors when multiple tumors are analyzed, but this strategy can lead to inconsistent results and loss of statistical power. In this work we will extend clonality tests to three and more malignancies from the same patient. A non-parametric test can be performed using any possible subset of tumors, with the subsequent adjustment for multiple testing. A parametric likelihood model is developed for 3 or 4 tumors, and it can be used to estimate the phylogenetic tree of tumors. The proposed tests are more powerful than combination of all possible pairwise tests.</p>","PeriodicalId":48980,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":"11 4","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2012-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/1544-6115.1757","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Applications in Genetics and Molecular Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/1544-6115.1757","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Cancer patients often develop multiple malignancies that may be either metastatic spread of a previous cancer (clonal tumors) or new primary cancers (independent tumors). If diagnosis cannot be easily made on the basis of the pathology review, the patterns of somatic mutations in the tumors can be compared. Previously we have developed statistical methods for testing clonality of two tumors using their loss of heterozygosity (LOH) profiles at several candidate markers. These methods can be applied to all possible pairs of tumors when multiple tumors are analyzed, but this strategy can lead to inconsistent results and loss of statistical power. In this work we will extend clonality tests to three and more malignancies from the same patient. A non-parametric test can be performed using any possible subset of tumors, with the subsequent adjustment for multiple testing. A parametric likelihood model is developed for 3 or 4 tumors, and it can be used to estimate the phylogenetic tree of tumors. The proposed tests are more powerful than combination of all possible pairwise tests.
期刊介绍:
Statistical Applications in Genetics and Molecular Biology seeks to publish significant research on the application of statistical ideas to problems arising from computational biology. The focus of the papers should be on the relevant statistical issues but should contain a succinct description of the relevant biological problem being considered. The range of topics is wide and will include topics such as linkage mapping, association studies, gene finding and sequence alignment, protein structure prediction, design and analysis of microarray data, molecular evolution and phylogenetic trees, DNA topology, and data base search strategies. Both original research and review articles will be warmly received.