Computing Inter-Rater Reliability for Observational Data: An Overview and Tutorial.

IF 1.3 Q2 SOCIAL SCIENCES, INTERDISCIPLINARY
Kevin A Hallgren
{"title":"Computing Inter-Rater Reliability for Observational Data: An Overview and Tutorial.","authors":"Kevin A Hallgren","doi":"10.20982/tqmp.08.1.p023","DOIUrl":null,"url":null,"abstract":"<p><p>Many research designs require the assessment of inter-rater reliability (IRR) to demonstrate consistency among observational ratings provided by multiple coders. However, many studies use incorrect statistical procedures, fail to fully report the information necessary to interpret their results, or do not address how IRR affects the power of their subsequent analyses for hypothesis testing. This paper provides an overview of methodological issues related to the assessment of IRR with a focus on study design, selection of appropriate statistics, and the computation, interpretation, and reporting of some commonly-used IRR statistics. Computational examples include SPSS and R syntax for computing Cohen's kappa and intra-class correlations to assess IRR.</p>","PeriodicalId":45805,"journal":{"name":"Quantitative Methods for Psychology","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3402032/pdf/nihms372951.pdf","citationCount":"3199","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Methods for Psychology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20982/tqmp.08.1.p023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 3199

Abstract

Many research designs require the assessment of inter-rater reliability (IRR) to demonstrate consistency among observational ratings provided by multiple coders. However, many studies use incorrect statistical procedures, fail to fully report the information necessary to interpret their results, or do not address how IRR affects the power of their subsequent analyses for hypothesis testing. This paper provides an overview of methodological issues related to the assessment of IRR with a focus on study design, selection of appropriate statistics, and the computation, interpretation, and reporting of some commonly-used IRR statistics. Computational examples include SPSS and R syntax for computing Cohen's kappa and intra-class correlations to assess IRR.

计算观测数据间的可靠性:概述和教程。
许多研究设计需要评估评分者间信度(IRR),以证明多个编码器提供的观察评分之间的一致性。然而,许多研究使用了不正确的统计程序,未能充分报告解释其结果所需的信息,或者没有解决IRR如何影响其后续假设检验分析的能力。本文概述了与IRR评估相关的方法学问题,重点是研究设计,选择适当的统计数据,以及一些常用IRR统计数据的计算,解释和报告。计算示例包括SPSS和R语法,用于计算Cohen的kappa和类内相关性以评估IRR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantitative Methods for Psychology
Quantitative Methods for Psychology SOCIAL SCIENCES, INTERDISCIPLINARY-
自引率
9.10%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信