Detection of ischemic neuronal damage with [¹⁸F]BMS-747158-02, a mitochondrial complex-1 positron emission tomography ligand: small animal PET study in rat brain.
Dai Fukumoto, Shingo Nishiyama, Norihiro Harada, Shigeyuki Yamamoto, Hideo Tsukada
{"title":"Detection of ischemic neuronal damage with [¹⁸F]BMS-747158-02, a mitochondrial complex-1 positron emission tomography ligand: small animal PET study in rat brain.","authors":"Dai Fukumoto, Shingo Nishiyama, Norihiro Harada, Shigeyuki Yamamoto, Hideo Tsukada","doi":"10.1002/syn.21584","DOIUrl":null,"url":null,"abstract":"<p><p>The acute and subacute ischemic neuronal damage in rat brain caused by photochemically induced thrombosis (PIT) was imaged using [¹⁸F]BMS-747158-02 ([¹⁸F]BMS) for mitochondrial complex-1 (MC-1) and [¹¹C](R)-PK11195 ([¹¹C](R)-PK) for peripheral benzodiazepine receptor [PBR; translocator protein] at preischemic \"Normal,\" 1 (day 1), and 7 days (day 7) after ischemic insult. When [¹⁸F]BMS was intravenously injected into \"Normal\" rat, it was rapidly taken up into the brain, in which it showed a homogeneous distribution, and the uptake was suppressed by rotenone, a specific MC-1 inhibitor. The specificity of [¹⁸F]BMS binding to MC-1 was also confirmed by living brain slice imaging. At day 1, [¹⁸F]BMS uptake was low in infarct and peri-infarct regions where neuronal damage was detected by 2,3,5-triphenyltetrazolium chloride (TTC) staining. At day 7, the damaged areas determined using [¹⁸F]BMS revealed some discrepancy from those detected by TTC staining, suggesting that TTC stained not only surviving cells but also activated microglial cells in the peri-infarct region. This was also confirmed by [¹¹C](R)-PK imaging and immunohistochemical assessment with Iba1 antibody. In contrast, the uptake pattern of [¹⁸F]BMS was consistent with immunohistochemical assessment with NeuN antibody at both days 1 and 7. These results demonstrated that [¹⁸F]BMS could be a promising positron emission tomography ligand to assess the neuronal damage induced by ischemic insult in both acute and subacute phases.</p>","PeriodicalId":118978,"journal":{"name":"Synapse (New York, N.y.)","volume":" ","pages":"909-17"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/syn.21584","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synapse (New York, N.y.)","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/syn.21584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/7/27 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
The acute and subacute ischemic neuronal damage in rat brain caused by photochemically induced thrombosis (PIT) was imaged using [¹⁸F]BMS-747158-02 ([¹⁸F]BMS) for mitochondrial complex-1 (MC-1) and [¹¹C](R)-PK11195 ([¹¹C](R)-PK) for peripheral benzodiazepine receptor [PBR; translocator protein] at preischemic "Normal," 1 (day 1), and 7 days (day 7) after ischemic insult. When [¹⁸F]BMS was intravenously injected into "Normal" rat, it was rapidly taken up into the brain, in which it showed a homogeneous distribution, and the uptake was suppressed by rotenone, a specific MC-1 inhibitor. The specificity of [¹⁸F]BMS binding to MC-1 was also confirmed by living brain slice imaging. At day 1, [¹⁸F]BMS uptake was low in infarct and peri-infarct regions where neuronal damage was detected by 2,3,5-triphenyltetrazolium chloride (TTC) staining. At day 7, the damaged areas determined using [¹⁸F]BMS revealed some discrepancy from those detected by TTC staining, suggesting that TTC stained not only surviving cells but also activated microglial cells in the peri-infarct region. This was also confirmed by [¹¹C](R)-PK imaging and immunohistochemical assessment with Iba1 antibody. In contrast, the uptake pattern of [¹⁸F]BMS was consistent with immunohistochemical assessment with NeuN antibody at both days 1 and 7. These results demonstrated that [¹⁸F]BMS could be a promising positron emission tomography ligand to assess the neuronal damage induced by ischemic insult in both acute and subacute phases.