Intraoperative computed tomography for repair of facial fractures.

E Bradley Strong
{"title":"Intraoperative computed tomography for repair of facial fractures.","authors":"E Bradley Strong","doi":"10.1001/archfacial.2011.1397","DOIUrl":null,"url":null,"abstract":"Objective: To assess the practicality and potential benefitsofintraoperativecomputedtomographyusingamobile scanner in the operating room during repair of orbitozygomatic fractures. Setting: Level I trauma center. Design: Twenty-five patients undergoing open reductionofaunilateraldisplacedfractureofthezygomaand/or repairofablow-outfractureoftheorbitwithcranialbone grafts were placed into a radiolucent head holder and interfaced with the mobile scanner. Spatial vectors were drawn on scans displayed on a computer monitor to allow intraoperative side-to-side comparison of the position of the malar prominences and orbital walls. Corrections of fracture reduction or bone graft position were made as indicated by the comparisons. Results: All scans were accomplished without apparent contamination of the surgical field. Major revisions were performed, based on the scans, in 2 patients whose displaced, comminuted zygoma fractures had been initially reduced with wide exposure of all fracture sites. Minor revisions were performed in 3 patients with displaced but less severely comminuted fractures that had been reduced without exposure of all fracture sites. Bone grafts were repositioned within the orbit in 2 patients with large 2-wall blow-out fractures. Conclusions: Intraoperative computed tomographic evaluation of the adequacy of repair of orbitozygomatic fractures is feasible with the mobile computed tomographic scanner. The scanner allows correction of discrepancies in position of the malar prominences and orbital walls at the time of acute repair, rather than during costly, more difficult delayed revisions. It may eliminate the need for direct visualization of all fracture sites to ensure adequate reduction in selected cases with displaced, comminuted fractures, thus decreasing operating room time and expense. Further study is required to fully document the cost-effectiveness of this approach to facial fracture management.","PeriodicalId":55470,"journal":{"name":"Archives of Facial Plastic Surgery","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1001/archfacial.2011.1397","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Facial Plastic Surgery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1001/archfacial.2011.1397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Objective: To assess the practicality and potential benefitsofintraoperativecomputedtomographyusingamobile scanner in the operating room during repair of orbitozygomatic fractures. Setting: Level I trauma center. Design: Twenty-five patients undergoing open reductionofaunilateraldisplacedfractureofthezygomaand/or repairofablow-outfractureoftheorbitwithcranialbone grafts were placed into a radiolucent head holder and interfaced with the mobile scanner. Spatial vectors were drawn on scans displayed on a computer monitor to allow intraoperative side-to-side comparison of the position of the malar prominences and orbital walls. Corrections of fracture reduction or bone graft position were made as indicated by the comparisons. Results: All scans were accomplished without apparent contamination of the surgical field. Major revisions were performed, based on the scans, in 2 patients whose displaced, comminuted zygoma fractures had been initially reduced with wide exposure of all fracture sites. Minor revisions were performed in 3 patients with displaced but less severely comminuted fractures that had been reduced without exposure of all fracture sites. Bone grafts were repositioned within the orbit in 2 patients with large 2-wall blow-out fractures. Conclusions: Intraoperative computed tomographic evaluation of the adequacy of repair of orbitozygomatic fractures is feasible with the mobile computed tomographic scanner. The scanner allows correction of discrepancies in position of the malar prominences and orbital walls at the time of acute repair, rather than during costly, more difficult delayed revisions. It may eliminate the need for direct visualization of all fracture sites to ensure adequate reduction in selected cases with displaced, comminuted fractures, thus decreasing operating room time and expense. Further study is required to fully document the cost-effectiveness of this approach to facial fracture management.
术中计算机断层扫描修复面部骨折。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
2 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信