Drosophila telomeres: an example of co-evolution with transposable elements.

Genome dynamics Pub Date : 2012-01-01 Epub Date: 2012-06-25 DOI:10.1159/000337127
R Silva-Sousa, E López-Panadѐs, E Casacuberta
{"title":"Drosophila telomeres: an example of co-evolution with transposable elements.","authors":"R Silva-Sousa,&nbsp;E López-Panadѐs,&nbsp;E Casacuberta","doi":"10.1159/000337127","DOIUrl":null,"url":null,"abstract":"<p><p>Telomeres have a DNA component composed of repetitive sequences. In most eukaryotes these repeats are very similar in length and sequence and are maintained by a highly conserved specialized cellular enzyme, telomerase. Some exceptions of the telomerase mechanism exist in eukaryotes of which the most studied are concentrated in insects, and from these, Drosophila species stand out in particular. The alternative mechanism of telomere maintenance in Drosophila is based on targeted transposition of 3 very special non-LTR retrotransposons, HeT-A, TART and TAHRE. The fingerprint of the co-evolution between the Drosophila genome and the telomeric retrotransposons is visible in special features of both. In this chapter, we will review the main aspects of Drosophila telomeres and the telomere retrotransposons that explain how this alternative mechanism works, is regulated, and evolves. By going through the different aspects of this symbiotic relationship, we will try to unravel which have been the necessary changes at Drosophila telomeres in order to exert their telomeric function analogously to telomerase telomeres, and also which particularities have been maintained in order to preserve the retrotransposon personality of HeT-A, TART and TAHRE. Drosophila telomeres constitute a remarkable variant that reminds us how exceptions should be treasured in order to widen our knowledge in any particular biological mechanism.</p>","PeriodicalId":87974,"journal":{"name":"Genome dynamics","volume":"7 ","pages":"46-67"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000337127","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000337127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/6/25 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

Telomeres have a DNA component composed of repetitive sequences. In most eukaryotes these repeats are very similar in length and sequence and are maintained by a highly conserved specialized cellular enzyme, telomerase. Some exceptions of the telomerase mechanism exist in eukaryotes of which the most studied are concentrated in insects, and from these, Drosophila species stand out in particular. The alternative mechanism of telomere maintenance in Drosophila is based on targeted transposition of 3 very special non-LTR retrotransposons, HeT-A, TART and TAHRE. The fingerprint of the co-evolution between the Drosophila genome and the telomeric retrotransposons is visible in special features of both. In this chapter, we will review the main aspects of Drosophila telomeres and the telomere retrotransposons that explain how this alternative mechanism works, is regulated, and evolves. By going through the different aspects of this symbiotic relationship, we will try to unravel which have been the necessary changes at Drosophila telomeres in order to exert their telomeric function analogously to telomerase telomeres, and also which particularities have been maintained in order to preserve the retrotransposon personality of HeT-A, TART and TAHRE. Drosophila telomeres constitute a remarkable variant that reminds us how exceptions should be treasured in order to widen our knowledge in any particular biological mechanism.

果蝇端粒:与转座因子共同进化的一个例子。
端粒有一个由重复序列组成的DNA成分。在大多数真核生物中,这些重复序列在长度和序列上非常相似,并由一种高度保守的特化细胞酶端粒酶维持。端粒酶机制的一些例外存在于真核生物中,其中研究最多的集中在昆虫身上,而在这些生物中,果蝇物种尤为突出。果蝇端粒维持的另一种机制是基于3个非常特殊的非ltr反转录转座子HeT-A、TART和TAHRE的靶向转座。果蝇基因组与端粒反转录转座子共同进化的指纹在两者的特殊特征中都是可见的。在本章中,我们将回顾果蝇端粒和端粒反转录转座子的主要方面,以解释这种替代机制是如何工作的,是如何被调节和进化的。通过研究这种共生关系的不同方面,我们将试图揭示果蝇端粒中哪些是必要的变化,以便发挥端粒酶端粒类似的端粒功能,以及为了保持HeT-A, TART和TAHRE的反转录转座子个性而保持哪些特殊性。果蝇的端粒构成了一个显著的变体,它提醒我们应该如何珍惜例外,以便扩大我们对任何特定生物机制的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信