{"title":"Eco-friendly synthesis and antimicrobial activities of some 1-phenyl-3(5-bromothiophen-2-yl)-5-(substituted phenyl)-2-pyrazolines.","authors":"Ramalingam Sasikala, Kannan Thirumurthy, Perumal Mayavel, Ganesamoorthy Thirunarayanan","doi":"10.1186/2191-2858-2-20","DOIUrl":null,"url":null,"abstract":"<p><strong>Unlabelled: </strong></p><p><strong>Background: </strong>Green catalyst fly ash: H2SO4 was prepared by mixing fly ash and sulphuric acid. Microwave irradiations are applied for solid phase cyclization of 5-bromo-2-thienyl chalcones and phenyl hydrazine hydrate in the presence of fly ash: H2SO4 yields, 1-phenyl-3(5-bromothiophen-2-yl)-5-(substituted phenyl)-2-pyrazolines. These pyrazolines were characterized by their physical constants and spectral data. The antimicrobial activities of all synthesized pyrazolines have been studied.</p><p><strong>Results: </strong>Scanning electron microscopy (SEM) analysis shows the morphology changes between fly ash and the catalyst fly ash: H2SO4. The SEM photographs with the scale of 1 and 50 μm show the fly-ash particle is corroded by H2SO4 (indicated by arrow mark), and this may be due to dissolution of fly ash by H2SO4. The yields of 1-phenyl-3(5-bromothiophen-2-yl)-5-(substituted phenyl)-2-pyrazolines is more than 75% using this catalyst under microwave heating. All pyrazolines showed moderate activities against antimicrobial strains.</p><p><strong>Conclusion: </strong>We have developed an efficient catalytic method for synthesis of 1-phenyl-3(5-bromothiophen-2-yl)-5-(substituted phenyl)-2-pyrazolines by solid phase cyclization using a solvent-free environmentally greener catalyst fly ash: H2SO4 under microwave irradiation between aryl chalcones and hydrazine hydrate. This reaction protocol offers a simple, economical, environment friendly, non-hazardous, easier work-up procedure, and good yields. All synthesized pyrazoline derivatives showed moderate antimicrobial activities against bacterial and fungal strains.</p>","PeriodicalId":19639,"journal":{"name":"Organic and Medicinal Chemistry Letters","volume":"2 1","pages":"20"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2191-2858-2-20","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic and Medicinal Chemistry Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/2191-2858-2-20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
Unlabelled:
Background: Green catalyst fly ash: H2SO4 was prepared by mixing fly ash and sulphuric acid. Microwave irradiations are applied for solid phase cyclization of 5-bromo-2-thienyl chalcones and phenyl hydrazine hydrate in the presence of fly ash: H2SO4 yields, 1-phenyl-3(5-bromothiophen-2-yl)-5-(substituted phenyl)-2-pyrazolines. These pyrazolines were characterized by their physical constants and spectral data. The antimicrobial activities of all synthesized pyrazolines have been studied.
Results: Scanning electron microscopy (SEM) analysis shows the morphology changes between fly ash and the catalyst fly ash: H2SO4. The SEM photographs with the scale of 1 and 50 μm show the fly-ash particle is corroded by H2SO4 (indicated by arrow mark), and this may be due to dissolution of fly ash by H2SO4. The yields of 1-phenyl-3(5-bromothiophen-2-yl)-5-(substituted phenyl)-2-pyrazolines is more than 75% using this catalyst under microwave heating. All pyrazolines showed moderate activities against antimicrobial strains.
Conclusion: We have developed an efficient catalytic method for synthesis of 1-phenyl-3(5-bromothiophen-2-yl)-5-(substituted phenyl)-2-pyrazolines by solid phase cyclization using a solvent-free environmentally greener catalyst fly ash: H2SO4 under microwave irradiation between aryl chalcones and hydrazine hydrate. This reaction protocol offers a simple, economical, environment friendly, non-hazardous, easier work-up procedure, and good yields. All synthesized pyrazoline derivatives showed moderate antimicrobial activities against bacterial and fungal strains.