Brendan D Stamper, Sarah S Park, Richard P Beyer, Theo K Bammler, Michael L Cunningham
{"title":"Unique sex-based approach identifies transcriptomic biomarkers associated with non-syndromic craniosynostosis.","authors":"Brendan D Stamper, Sarah S Park, Richard P Beyer, Theo K Bammler, Michael L Cunningham","doi":"10.4137/GRSB.S9693","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The premature fusion of one cranial suture, also referred to as non-syndromic craniosynostosis, most commonly involves premature fusion of the sagittal, coronal, or metopic sutures, in that order. Population-based epidemiological studies have found that the birth prevalence of single-suture craniosynostosis is both suture- and sex-dependent.</p><p><strong>Methods: </strong>Transcriptomic data from 199 individuals with isolated sagittal (n = 100), unilateral coronal (n = 50), and metopic (n = 49) synostosis were compared against a control population (n = 50) to identify transcripts accounting for the different sex-based frequencies observed in this disease.</p><p><strong>Results: </strong>Differential sex-based gene expression was classified as either gained (divergent) or lost (convergent) in affected individuals to identify transcripts related to disease predilection. Divergent expression was dependent on synostosis sub-type, and was extensive in metopic craniosynostosis specifically. Convergent microarray-based expression was independent of synostosis sub-type, with convergent expression of FBN2, IGF2BP3, PDE1C and TINAGL1 being the most robust across all synostosis sub-types.</p><p><strong>Conclusions: </strong>Analysis of sex-based gene expression followed by validation by qRT-PCR identified that concurrent upregulation of FBN2 and IGF2BP3, and downregulation of TINAGL1 in craniosynostosis cases were all associated with increased RUNX2 expression and may represent a transcriptomic signature that can be used to characterize a subset of single-suture craniosynostosis cases.</p>","PeriodicalId":73138,"journal":{"name":"Gene regulation and systems biology","volume":"6 ","pages":"81-92"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/GRSB.S9693","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene regulation and systems biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4137/GRSB.S9693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/5/16 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Background: The premature fusion of one cranial suture, also referred to as non-syndromic craniosynostosis, most commonly involves premature fusion of the sagittal, coronal, or metopic sutures, in that order. Population-based epidemiological studies have found that the birth prevalence of single-suture craniosynostosis is both suture- and sex-dependent.
Methods: Transcriptomic data from 199 individuals with isolated sagittal (n = 100), unilateral coronal (n = 50), and metopic (n = 49) synostosis were compared against a control population (n = 50) to identify transcripts accounting for the different sex-based frequencies observed in this disease.
Results: Differential sex-based gene expression was classified as either gained (divergent) or lost (convergent) in affected individuals to identify transcripts related to disease predilection. Divergent expression was dependent on synostosis sub-type, and was extensive in metopic craniosynostosis specifically. Convergent microarray-based expression was independent of synostosis sub-type, with convergent expression of FBN2, IGF2BP3, PDE1C and TINAGL1 being the most robust across all synostosis sub-types.
Conclusions: Analysis of sex-based gene expression followed by validation by qRT-PCR identified that concurrent upregulation of FBN2 and IGF2BP3, and downregulation of TINAGL1 in craniosynostosis cases were all associated with increased RUNX2 expression and may represent a transcriptomic signature that can be used to characterize a subset of single-suture craniosynostosis cases.