Recognizing Emotions From an Ensemble of Features.

U Tariq, Kai-Hsiang Lin, Zhen Li, Xi Zhou, Zhaowen Wang, Vuong Le, T S Huang, Xutao Lv, T X Han
{"title":"Recognizing Emotions From an Ensemble of Features.","authors":"U Tariq,&nbsp;Kai-Hsiang Lin,&nbsp;Zhen Li,&nbsp;Xi Zhou,&nbsp;Zhaowen Wang,&nbsp;Vuong Le,&nbsp;T S Huang,&nbsp;Xutao Lv,&nbsp;T X Han","doi":"10.1109/TSMCB.2012.2194701","DOIUrl":null,"url":null,"abstract":"<p><p>This paper details the authors' efforts to push the baseline of emotion recognition performance on the Geneva Multimodal Emotion Portrayals (GEMEP) Facial Expression Recognition and Analysis database. Both subject-dependent and subject-independent emotion recognition scenarios are addressed in this paper. The approach toward solving this problem involves face detection, followed by key-point identification, then feature generation, and then, finally, classification. An ensemble of features consisting of hierarchical Gaussianization, scale-invariant feature transform, and some coarse motion features have been used. In the classification stage, we used support vector machines. The classification task has been divided into person-specific and person-independent emotion recognitions using face recognition with either manual labels or automatic algorithms. We achieve 100% performance for the person-specific one, 66% performance for the person-independent one, and 80% performance for overall results, in terms of classification rate, for emotion recognition with manual identification of subjects. </p>","PeriodicalId":55006,"journal":{"name":"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics","volume":" ","pages":"1017-26"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TSMCB.2012.2194701","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSMCB.2012.2194701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/5/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

This paper details the authors' efforts to push the baseline of emotion recognition performance on the Geneva Multimodal Emotion Portrayals (GEMEP) Facial Expression Recognition and Analysis database. Both subject-dependent and subject-independent emotion recognition scenarios are addressed in this paper. The approach toward solving this problem involves face detection, followed by key-point identification, then feature generation, and then, finally, classification. An ensemble of features consisting of hierarchical Gaussianization, scale-invariant feature transform, and some coarse motion features have been used. In the classification stage, we used support vector machines. The classification task has been divided into person-specific and person-independent emotion recognitions using face recognition with either manual labels or automatic algorithms. We achieve 100% performance for the person-specific one, 66% performance for the person-independent one, and 80% performance for overall results, in terms of classification rate, for emotion recognition with manual identification of subjects.

从特征集合中识别情感。
本文详细介绍了作者在日内瓦多模态情绪描述(GEMEP)面部表情识别和分析数据库上推动情绪识别性能基线的努力。本文讨论了主体依赖和主体独立的情感识别场景。解决这个问题的方法包括人脸检测,然后是关键点识别,然后是特征生成,最后是分类。采用了由层次高斯化、尺度不变特征变换和一些粗运动特征组成的特征集合。在分类阶段,我们使用了支持向量机。分类任务分为个人情感识别和个人独立情感识别,使用手动标签或自动算法进行人脸识别。我们在个人特定的情况下达到了100%的表现,在个人独立的情况下达到了66%的表现,在分类率方面,在人工识别对象的情感识别方面,总体结果达到了80%的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
6.0 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信