{"title":"Neuronal functions of activators of G protein signaling.","authors":"Man K Tse, Yung H Wong","doi":"10.1159/000337263","DOIUrl":null,"url":null,"abstract":"<p><p>G protein-coupled receptors (GPCRs) are one of the most important gateways for signal transduction across the plasma membrane. Over the past decade, several classes of alternative regulators of G protein signaling have been identified and reported to activate the G proteins independent of the GPCRs. One group of such regulators is the activator of G protein signaling (AGS) family which comprises of AGS1-10. They have entirely different activation mechanisms for G proteins as compared to the classic model of GPCR-mediated signaling and confer upon cells new avenues of signal transduction. As GPCRs are widely expressed in our nervous system, it is believed that the AGS family plays a major role in modulating the G protein signaling in neurons. In this article, we will review the current knowledge on AGS proteins in relation to their potential roles in neuronal regulations.</p>","PeriodicalId":19171,"journal":{"name":"Neurosignals","volume":"21 3-4","pages":"259-71"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000337263","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurosignals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000337263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/5/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 5
Abstract
G protein-coupled receptors (GPCRs) are one of the most important gateways for signal transduction across the plasma membrane. Over the past decade, several classes of alternative regulators of G protein signaling have been identified and reported to activate the G proteins independent of the GPCRs. One group of such regulators is the activator of G protein signaling (AGS) family which comprises of AGS1-10. They have entirely different activation mechanisms for G proteins as compared to the classic model of GPCR-mediated signaling and confer upon cells new avenues of signal transduction. As GPCRs are widely expressed in our nervous system, it is believed that the AGS family plays a major role in modulating the G protein signaling in neurons. In this article, we will review the current knowledge on AGS proteins in relation to their potential roles in neuronal regulations.
期刊介绍:
Neurosignals is an international journal dedicated to publishing original articles and reviews in the field of neuronal communication. Novel findings related to signaling molecules, channels and transporters, pathways and networks that are associated with development and function of the nervous system are welcome. The scope of the journal includes genetics, molecular biology, bioinformatics, (patho)physiology, (patho)biochemistry, pharmacology & toxicology, imaging and clinical neurology & psychiatry. Reported observations should significantly advance our understanding of neuronal signaling in health & disease and be presented in a format applicable to an interdisciplinary readership.