{"title":"Point Process Heart Rate Variability Assessment during Sleep Deprivation.","authors":"L Citi, Eb Klerman, En Brown, R Barbieri","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>To investigate the potential relationships between Heart rate variability (HRV) and objective performance-subjective alertness measures during sleep deprivation, a novel point process algorithm was applied to ECG data from healthy young subjects in a 52-hour Constant Routine protocol, which includes sleep deprivation. Our algorithm is able to estimate the time-varying behavior of the HRV spectral indexes in an on-line instantaneous fashion. Results demonstrate the ability of our framework to provide high time-resolution sympatho-vagal dynamics as measured by spectral low frequency (LF) and high frequency (HF) power. Correlation analysis on individual subjects reveals a relevant correspondence between LF/HF and subjective alertness during the initial hours of sleep deprivation. At longer times awake, high correlation levels between LF/HF and objective performance indicate an increasing sympathetic drive as performance measures worsen. These results suggest that our point-process based HRV assessment could aid in real-time prediction of performance-alertness.</p>","PeriodicalId":72683,"journal":{"name":"Computing in cardiology","volume":"37 ","pages":"721-724"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3110699/pdf/nihms249624.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing in cardiology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
To investigate the potential relationships between Heart rate variability (HRV) and objective performance-subjective alertness measures during sleep deprivation, a novel point process algorithm was applied to ECG data from healthy young subjects in a 52-hour Constant Routine protocol, which includes sleep deprivation. Our algorithm is able to estimate the time-varying behavior of the HRV spectral indexes in an on-line instantaneous fashion. Results demonstrate the ability of our framework to provide high time-resolution sympatho-vagal dynamics as measured by spectral low frequency (LF) and high frequency (HF) power. Correlation analysis on individual subjects reveals a relevant correspondence between LF/HF and subjective alertness during the initial hours of sleep deprivation. At longer times awake, high correlation levels between LF/HF and objective performance indicate an increasing sympathetic drive as performance measures worsen. These results suggest that our point-process based HRV assessment could aid in real-time prediction of performance-alertness.