Sean Kerman, Branton J Campbell, Kiran K Satyavarapu, Harold T Stokes, Francesca Perselli, John S O Evans
{"title":"The superstructure determination of displacive distortions via symmetry-mode analysis.","authors":"Sean Kerman, Branton J Campbell, Kiran K Satyavarapu, Harold T Stokes, Francesca Perselli, John S O Evans","doi":"10.1107/S0108767311046241","DOIUrl":null,"url":null,"abstract":"<p><p>For any crystal structure that can be viewed as a low-symmetry distortion of some higher-symmetry parent structure, one can represent the details of the distorted structure in terms of symmetry-adapted distortion modes of the parent structure rather than the traditional list of atomic xyz coordinates. Because most symmetry modes tend to be inactive, and only a relatively small number of mode amplitudes are dominant in producing the observed distortion, symmetry-mode analysis can greatly simplify the determination of a displacively distorted structure from powder diffraction data. This is an important capability when peak splittings are small, superlattice intensities are weak or systematic absences fail to distinguish between candidate symmetries. Here, the symmetry-mode basis is treated as a binary (on/off) parameter set that spans the space of all possible P1 symmetry distortions within the experimentally determined supercell. Using the average R(wp) over repeated local minimizations from random starting points as a cost function for a given mode set, global search strategies are employed to identify the active modes of the distortion. This procedure automatically yields the amplitudes of the active modes and the associated atomic coordinates. The active modes are then used to detect the space-group symmetry of the distorted phase (i.e. the type and location of each of the parent symmetry elements that remain within the distorted supercell). Once a handful of active modes are identified, traditional refinement methods readily yield their amplitudes and the resulting atomic coordinates. A final symmetry-mode refinement is then performed in the correct space-group symmetry to improve the sensitivity to any secondary modes present.</p>","PeriodicalId":7400,"journal":{"name":"Acta Crystallographica Section A","volume":"68 Pt 2","pages":"222-34"},"PeriodicalIF":1.8000,"publicationDate":"2012-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1107/S0108767311046241","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1107/S0108767311046241","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/1/5 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
For any crystal structure that can be viewed as a low-symmetry distortion of some higher-symmetry parent structure, one can represent the details of the distorted structure in terms of symmetry-adapted distortion modes of the parent structure rather than the traditional list of atomic xyz coordinates. Because most symmetry modes tend to be inactive, and only a relatively small number of mode amplitudes are dominant in producing the observed distortion, symmetry-mode analysis can greatly simplify the determination of a displacively distorted structure from powder diffraction data. This is an important capability when peak splittings are small, superlattice intensities are weak or systematic absences fail to distinguish between candidate symmetries. Here, the symmetry-mode basis is treated as a binary (on/off) parameter set that spans the space of all possible P1 symmetry distortions within the experimentally determined supercell. Using the average R(wp) over repeated local minimizations from random starting points as a cost function for a given mode set, global search strategies are employed to identify the active modes of the distortion. This procedure automatically yields the amplitudes of the active modes and the associated atomic coordinates. The active modes are then used to detect the space-group symmetry of the distorted phase (i.e. the type and location of each of the parent symmetry elements that remain within the distorted supercell). Once a handful of active modes are identified, traditional refinement methods readily yield their amplitudes and the resulting atomic coordinates. A final symmetry-mode refinement is then performed in the correct space-group symmetry to improve the sensitivity to any secondary modes present.
期刊介绍:
Acta Crystallographica Section A: Foundations and Advances publishes articles reporting advances in the theory and practice of all areas of crystallography in the broadest sense. As well as traditional crystallography, this includes nanocrystals, metacrystals, amorphous materials, quasicrystals, synchrotron and XFEL studies, coherent scattering, diffraction imaging, time-resolved studies and the structure of strain and defects in materials.
The journal has two parts, a rapid-publication Advances section and the traditional Foundations section. Articles for the Advances section are of particularly high value and impact. They receive expedited treatment and may be highlighted by an accompanying scientific commentary article and a press release. Further details are given in the November 2013 Editorial.
The central themes of the journal are, on the one hand, experimental and theoretical studies of the properties and arrangements of atoms, ions and molecules in condensed matter, periodic, quasiperiodic or amorphous, ideal or real, and, on the other, the theoretical and experimental aspects of the various methods to determine these properties and arrangements.