Analysis of the salivary microbiome using culture-independent techniques.

Vladimir Lazarevic, Katrine Whiteson, Nadia Gaïa, Yann Gizard, David Hernandez, Laurent Farinelli, Magne Osterås, Patrice François, Jacques Schrenzel
{"title":"Analysis of the salivary microbiome using culture-independent techniques.","authors":"Vladimir Lazarevic,&nbsp;Katrine Whiteson,&nbsp;Nadia Gaïa,&nbsp;Yann Gizard,&nbsp;David Hernandez,&nbsp;Laurent Farinelli,&nbsp;Magne Osterås,&nbsp;Patrice François,&nbsp;Jacques Schrenzel","doi":"10.1186/2043-9113-2-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The salivary microbiota is a potential diagnostic indicator of several diseases. Culture-independent techniques are required to study the salivary microbial community since many of its members have not been cultivated.</p><p><strong>Methods: </strong>We explored the bacterial community composition in the saliva sample using metagenomic whole genome shotgun (WGS) sequencing, the extraction of 16S rRNA gene fragments from metagenomic sequences (16S-WGS) and high-throughput sequencing of PCR-amplified bacterial 16S rDNA gene (16S-HTS) regions V1 and V3.</p><p><strong>Results: </strong>The hierarchical clustering of data based on the relative abundance of bacterial genera revealed that distances between 16S-HTS datasets for V1 and V3 regions were greater than those obtained for the same V region with different numbers of PCR cycles. Datasets generated by 16S-HTS and 16S-WGS were even more distant. Finally, comparison of WGS and 16S-based datasets revealed the highest dissimilarity.The analysis of the 16S-HTS, WGS and 16S-WGS datasets revealed 206, 56 and 39 bacterial genera, respectively, 124 of which have not been previously identified in salivary microbiomes. A large fraction of DNA extracted from saliva corresponded to human DNA. Based on sequence similarity search against completely sequenced genomes, bacterial and viral sequences represented 0.73% and 0.0036% of the salivary metagenome, respectively. Several sequence reads were identified as parts of the human herpesvirus 7.</p><p><strong>Conclusions: </strong>Analysis of the salivary metagenome may have implications in diagnostics e.g. in detection of microorganisms and viruses without designing specific tests for each pathogen.</p>","PeriodicalId":73663,"journal":{"name":"Journal of clinical bioinformatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2043-9113-2-4","citationCount":"62","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of clinical bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/2043-9113-2-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 62

Abstract

Background: The salivary microbiota is a potential diagnostic indicator of several diseases. Culture-independent techniques are required to study the salivary microbial community since many of its members have not been cultivated.

Methods: We explored the bacterial community composition in the saliva sample using metagenomic whole genome shotgun (WGS) sequencing, the extraction of 16S rRNA gene fragments from metagenomic sequences (16S-WGS) and high-throughput sequencing of PCR-amplified bacterial 16S rDNA gene (16S-HTS) regions V1 and V3.

Results: The hierarchical clustering of data based on the relative abundance of bacterial genera revealed that distances between 16S-HTS datasets for V1 and V3 regions were greater than those obtained for the same V region with different numbers of PCR cycles. Datasets generated by 16S-HTS and 16S-WGS were even more distant. Finally, comparison of WGS and 16S-based datasets revealed the highest dissimilarity.The analysis of the 16S-HTS, WGS and 16S-WGS datasets revealed 206, 56 and 39 bacterial genera, respectively, 124 of which have not been previously identified in salivary microbiomes. A large fraction of DNA extracted from saliva corresponded to human DNA. Based on sequence similarity search against completely sequenced genomes, bacterial and viral sequences represented 0.73% and 0.0036% of the salivary metagenome, respectively. Several sequence reads were identified as parts of the human herpesvirus 7.

Conclusions: Analysis of the salivary metagenome may have implications in diagnostics e.g. in detection of microorganisms and viruses without designing specific tests for each pathogen.

Abstract Image

Abstract Image

使用非培养技术分析唾液微生物组。
背景:唾液微生物群是几种疾病的潜在诊断指标。由于唾液微生物群落的许多成员尚未被培养,因此研究唾液微生物群落需要非培养技术。方法:采用宏基因组全基因组霰弹枪(WGS)测序、提取宏基因组序列(16S-WGS)中的16S rRNA基因片段,并对pcr扩增的细菌16S rDNA基因(16S- hts) V1区和V3区进行高通量测序,研究唾液样本细菌群落组成。结果:根据细菌属的相对丰度对数据进行分层聚类,V1区和V3区16S-HTS数据集之间的距离大于不同PCR循环数下同一V区16S-HTS数据集之间的距离。16S-HTS和16S-WGS生成的数据集距离更远。最后,WGS和基于16s的数据集的比较显示出最大的差异。对16S-HTS、WGS和16S-WGS数据集的分析分别揭示了206、56和39个细菌属,其中124个以前未在唾液微生物组中发现。从唾液中提取的大部分DNA与人类DNA相符。基于全序列基因组的序列相似性搜索,细菌和病毒序列分别占唾液元基因组的0.73%和0.0036%。几个序列读数被鉴定为人类疱疹病毒7的一部分。结论:唾液宏基因组的分析可能对诊断有一定的意义,例如在不为每种病原体设计特异性检测的情况下检测微生物和病毒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信