{"title":"Polymorphism of Li2Zn3.","authors":"Volodymyr Pavlyuk, Ihor Chumak, Helmut Ehrenberg","doi":"10.1107/S0108768111053493","DOIUrl":null,"url":null,"abstract":"<p><p>Crystal structures of low- and high-temperature modifications of the binary phase Li(2)Zn(3) were determined by single-crystal X-ray diffraction techniques. The low-temperature modification is a disordered variant of Li(5)Sn(2), space group R\\bar 3m (No. 166). The high-temperature modification crystallizes as an anti-type to Li(5)Ga(4), space group P\\bar 3m1 (No. 164). Two polymorphs can be described as derivative structures to binary Li(5)Ga(4), Li(5)Sn(2), Li(13)Sn(5), Li(8)Pb(3), CeCd(2) and CdI(2) phases which belong to class 2 with the parent W-type in Krypyakevich's classification. All atoms in both polymorphs are coordinated by rhombic dodecahedra (coordination number CN = 14) like atoms in related structures. The Li(2)Zn(2.76) (for the low-temperature phase) and Li(2)Zn(2.82) (for the high-temperature phase) compositions were obtained after structure refinements. According to electronic structure calculations using the tight-binding-linear muffin-tin orbital-atomic spheres approximations (TB-LMTO-ASA) method, strong covalent Sn-Sn and Ga-Ga interactions were established in Li(5)Sn(2) and Li(5)Ga(4), but no similar Zn-Zn interactions were observed in Li(2)Zn(3).</p>","PeriodicalId":7107,"journal":{"name":"Acta Crystallographica Section B-structural Science","volume":"68 Pt 1","pages":"34-9"},"PeriodicalIF":1.9000,"publicationDate":"2012-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1107/S0108768111053493","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section B-structural Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1107/S0108768111053493","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/1/18 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Crystal structures of low- and high-temperature modifications of the binary phase Li(2)Zn(3) were determined by single-crystal X-ray diffraction techniques. The low-temperature modification is a disordered variant of Li(5)Sn(2), space group R\bar 3m (No. 166). The high-temperature modification crystallizes as an anti-type to Li(5)Ga(4), space group P\bar 3m1 (No. 164). Two polymorphs can be described as derivative structures to binary Li(5)Ga(4), Li(5)Sn(2), Li(13)Sn(5), Li(8)Pb(3), CeCd(2) and CdI(2) phases which belong to class 2 with the parent W-type in Krypyakevich's classification. All atoms in both polymorphs are coordinated by rhombic dodecahedra (coordination number CN = 14) like atoms in related structures. The Li(2)Zn(2.76) (for the low-temperature phase) and Li(2)Zn(2.82) (for the high-temperature phase) compositions were obtained after structure refinements. According to electronic structure calculations using the tight-binding-linear muffin-tin orbital-atomic spheres approximations (TB-LMTO-ASA) method, strong covalent Sn-Sn and Ga-Ga interactions were established in Li(5)Sn(2) and Li(5)Ga(4), but no similar Zn-Zn interactions were observed in Li(2)Zn(3).
期刊介绍:
Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials publishes scientific articles related to the structural science of compounds and materials in the widest sense. Knowledge of the arrangements of atoms, including their temporal variations and dependencies on temperature and pressure, is often the key to understanding physical and chemical phenomena and is crucial for the design of new materials and supramolecular devices. Acta Crystallographica B is the forum for the publication of such contributions. Scientific developments based on experimental studies as well as those based on theoretical approaches, including crystal-structure prediction, structure-property relations and the use of databases of crystal structures, are published.