Maria del Carmen Castillo-Hernandez, Noemi Meraz-Cruz, Gustavo Guevara-Balcazar, Jorge Lopez-Canales, Oscar Lopez-Canales, Norma Galindo, Carlos Castillo-Henkel
{"title":"Age-related differences in the beta-adrenergic vasodilator response in rat aortic rings.","authors":"Maria del Carmen Castillo-Hernandez, Noemi Meraz-Cruz, Gustavo Guevara-Balcazar, Jorge Lopez-Canales, Oscar Lopez-Canales, Norma Galindo, Carlos Castillo-Henkel","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Mechanisms underlying age-dependent changes in vasodilator responses to beta-adrenergic drugs are poorly understood. The aim of the current study was to compare responses to isoproterenol (a non-selective beta-adrenergic receptor agonist) in phenylephrine or KCl precontracted aortic rings from 3 week and 3 month old male Wistar rats. Both the mechanism and the subtype of beta-adrenergic receptor underlying the response to isoproterenol in the both age groups were examined. Endothelial removal, pre-contraction with KCl (40 mM), pre-treatment with tetraethylammonium or with N(omega)-Nitro-L-arginine methyl ester inhibited the vasodilator response to isoproterenol only in aortic rings from older rats. The inhibition was total when TEA and L-NAME were administered together. In both age groups the response to isoproterenol was unaffected by the beta1-adrenergic antagonist CGP20712A, but was significantly inhibited by ICI 118551 (a beta2-adrenergic-antagonist) and to a greater extent by SR 59230A (a non-selective beta 3-adrenergic antagonist), the inhibition being more evident in the older rats. Unlike younger rats, in older animals the response to isoproterenol was partially dependent on endothelial nitric oxide and on K+ channels. In both age groups, beta2- and beta3-, but not beta1-adrenergic receptors were involved. The degree of relative participation of beta2 and beta3 adrenergic receptors may change with age and explain the differences in response to isoproterenol.</p>","PeriodicalId":20701,"journal":{"name":"Proceedings of the Western Pharmacology Society","volume":"53 ","pages":"29-32"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Western Pharmacology Society","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Mechanisms underlying age-dependent changes in vasodilator responses to beta-adrenergic drugs are poorly understood. The aim of the current study was to compare responses to isoproterenol (a non-selective beta-adrenergic receptor agonist) in phenylephrine or KCl precontracted aortic rings from 3 week and 3 month old male Wistar rats. Both the mechanism and the subtype of beta-adrenergic receptor underlying the response to isoproterenol in the both age groups were examined. Endothelial removal, pre-contraction with KCl (40 mM), pre-treatment with tetraethylammonium or with N(omega)-Nitro-L-arginine methyl ester inhibited the vasodilator response to isoproterenol only in aortic rings from older rats. The inhibition was total when TEA and L-NAME were administered together. In both age groups the response to isoproterenol was unaffected by the beta1-adrenergic antagonist CGP20712A, but was significantly inhibited by ICI 118551 (a beta2-adrenergic-antagonist) and to a greater extent by SR 59230A (a non-selective beta 3-adrenergic antagonist), the inhibition being more evident in the older rats. Unlike younger rats, in older animals the response to isoproterenol was partially dependent on endothelial nitric oxide and on K+ channels. In both age groups, beta2- and beta3-, but not beta1-adrenergic receptors were involved. The degree of relative participation of beta2 and beta3 adrenergic receptors may change with age and explain the differences in response to isoproterenol.