Data-based controllability and observability analysis of linear discrete-time systems.

IEEE transactions on neural networks Pub Date : 2011-12-01 Epub Date: 2011-11-18 DOI:10.1109/TNN.2011.2170219
Zhuo Wang, Derong Liu
{"title":"Data-based controllability and observability analysis of linear discrete-time systems.","authors":"Zhuo Wang,&nbsp;Derong Liu","doi":"10.1109/TNN.2011.2170219","DOIUrl":null,"url":null,"abstract":"<p><p>In this brief, we develop data-based methods for analyzing the controllability and observability of linear discrete-time systems which have unknown system parameters. These data-based methods will only use measured data to construct the controllability matrix as well as the observability matrix, in order to verify the corresponding properties. The advantages of our methods are threefold. First, they can directly verify system properties based on measured data without knowing system parameters. Second, our calculation precision is higher than traditional approaches, which need to identify the unknown parameters. Third, our methods have lower computational complexities when constructing the controllability and observability matrices.</p>","PeriodicalId":13434,"journal":{"name":"IEEE transactions on neural networks","volume":"22 12","pages":"2388-92"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TNN.2011.2170219","citationCount":"58","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TNN.2011.2170219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/11/18 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

Abstract

In this brief, we develop data-based methods for analyzing the controllability and observability of linear discrete-time systems which have unknown system parameters. These data-based methods will only use measured data to construct the controllability matrix as well as the observability matrix, in order to verify the corresponding properties. The advantages of our methods are threefold. First, they can directly verify system properties based on measured data without knowing system parameters. Second, our calculation precision is higher than traditional approaches, which need to identify the unknown parameters. Third, our methods have lower computational complexities when constructing the controllability and observability matrices.

基于数据的线性离散系统的可控性和可观测性分析。
在本文中,我们发展了基于数据的方法来分析具有未知系统参数的线性离散系统的可控性和可观测性。这些基于数据的方法将只使用测量数据来构造可控性矩阵和可观测性矩阵,以验证相应的属性。我们的方法有三方面的优点。首先,他们可以在不知道系统参数的情况下,根据测量数据直接验证系统属性。其次,与需要识别未知参数的传统方法相比,我们的计算精度更高。第三,我们的方法在构造可控性和可观察性矩阵时具有较低的计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE transactions on neural networks
IEEE transactions on neural networks 工程技术-工程:电子与电气
自引率
0.00%
发文量
2
审稿时长
8.7 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信