Fast independent component analysis algorithm for quaternion valued signals.

IEEE transactions on neural networks Pub Date : 2011-12-01 Epub Date: 2011-10-20 DOI:10.1109/TNN.2011.2171362
Soroush Javidi, Clive Cheong Took, Danilo P Mandic
{"title":"Fast independent component analysis algorithm for quaternion valued signals.","authors":"Soroush Javidi,&nbsp;Clive Cheong Took,&nbsp;Danilo P Mandic","doi":"10.1109/TNN.2011.2171362","DOIUrl":null,"url":null,"abstract":"<p><p>An extension of the fast independent component analysis algorithm is proposed for the blind separation of both Q-proper and Q-improper quaternion-valued signals. This is achieved by maximizing a negentropy-based cost function, and is derived rigorously using the recently developed HR calculus in order to implement Newton optimization in the augmented quaternion statistics framework. It is shown that the use of augmented statistics and the associated widely linear modeling provides theoretical and practical advantages when dealing with general quaternion signals with noncircular (rotation-dependent) distributions. Simulations using both benchmark and real-world quaternion-valued signals support the approach.</p>","PeriodicalId":13434,"journal":{"name":"IEEE transactions on neural networks","volume":"22 12","pages":"1967-78"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TNN.2011.2171362","citationCount":"54","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TNN.2011.2171362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/10/20 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

Abstract

An extension of the fast independent component analysis algorithm is proposed for the blind separation of both Q-proper and Q-improper quaternion-valued signals. This is achieved by maximizing a negentropy-based cost function, and is derived rigorously using the recently developed HR calculus in order to implement Newton optimization in the augmented quaternion statistics framework. It is shown that the use of augmented statistics and the associated widely linear modeling provides theoretical and practical advantages when dealing with general quaternion signals with noncircular (rotation-dependent) distributions. Simulations using both benchmark and real-world quaternion-valued signals support the approach.

四元数值信号的快速独立分量分析算法。
提出了一种快速独立分量分析算法的扩展,用于盲分离q -固有和q -非固有四元数值信号。这是通过最大化基于负熵的成本函数来实现的,并且是使用最近开发的HR演算严格推导出来的,以便在增广四元数统计框架中实现牛顿优化。结果表明,在处理具有非圆(旋转相关)分布的一般四元数信号时,增广统计和相关的广泛线性建模的使用提供了理论和实践优势。使用基准和现实世界四元数值信号的模拟都支持这种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE transactions on neural networks
IEEE transactions on neural networks 工程技术-工程:电子与电气
自引率
0.00%
发文量
2
审稿时长
8.7 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信