{"title":"Modeling activity-dependent plasticity in BCM spiking neural networks with application to human behavior recognition.","authors":"Yan Meng, Yaochu Jin, Jun Yin","doi":"10.1109/TNN.2011.2171044","DOIUrl":null,"url":null,"abstract":"<p><p>Spiking neural networks (SNNs) are considered to be computationally more powerful than conventional NNs. However, the capability of SNNs in solving complex real-world problems remains to be demonstrated. In this paper, we propose a substantial extension of the Bienenstock, Cooper, and Munro (BCM) SNN model, in which the plasticity parameters are regulated by a gene regulatory network (GRN). Meanwhile, the dynamics of the GRN is dependent on the activation levels of the BCM neurons. We term the whole model \"GRN-BCM.\" To demonstrate its computational power, we first compare the GRN-BCM with a standard BCM, a hidden Markov model, and a reservoir computing model on a complex time series classification problem. Simulation results indicate that the GRN-BCM significantly outperforms the compared models. The GRN-BCM is then applied to two widely used datasets for human behavior recognition. Comparative results on the two datasets suggest that the GRN-BCM is very promising for human behavior recognition, although the current experiments are still limited to the scenarios in which only one object is moving in the considered video sequences.</p>","PeriodicalId":13434,"journal":{"name":"IEEE transactions on neural networks","volume":"22 12","pages":"1952-66"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TNN.2011.2171044","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TNN.2011.2171044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/10/20 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31
Abstract
Spiking neural networks (SNNs) are considered to be computationally more powerful than conventional NNs. However, the capability of SNNs in solving complex real-world problems remains to be demonstrated. In this paper, we propose a substantial extension of the Bienenstock, Cooper, and Munro (BCM) SNN model, in which the plasticity parameters are regulated by a gene regulatory network (GRN). Meanwhile, the dynamics of the GRN is dependent on the activation levels of the BCM neurons. We term the whole model "GRN-BCM." To demonstrate its computational power, we first compare the GRN-BCM with a standard BCM, a hidden Markov model, and a reservoir computing model on a complex time series classification problem. Simulation results indicate that the GRN-BCM significantly outperforms the compared models. The GRN-BCM is then applied to two widely used datasets for human behavior recognition. Comparative results on the two datasets suggest that the GRN-BCM is very promising for human behavior recognition, although the current experiments are still limited to the scenarios in which only one object is moving in the considered video sequences.