Intracellular signaling and the origins of the sensations of itch and pain.

IF 7.3 1区 生物学
Science Signaling Pub Date : 2011-08-23
Sang-Kyou Han, Melvin I Simon
{"title":"Intracellular signaling and the origins of the sensations of itch and pain.","authors":"Sang-Kyou Han,&nbsp;Melvin I Simon","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The skin is the largest sensory organ of the body. It is innervated by a diverse array of primary sensory neurons, including a heterogeneous subset of unmyelinated afferents called C fibers. C fibers, sometimes classified as nociceptors, can detect various painful stimuli, including temperature extremes. However, it is increasingly evident that these afferents respond to various pruritic stimuli and transmit information to the brain that is perceived as itch; this can subsequently drive scratching behavior. Although itch and pain are distinct sensations, they are closely related and can, under certain circumstances, antagonize each other. However, it is not clear precisely when, where, and how the processes generating these two sensations originate and how they are dissociated. Clues have come from the analysis of the activities of specific ligands and their receptors. New data indicate that specific pruritic ligands carrying both itch and pain information are selectively recognized by different G protein–coupled receptors (GPCRs), and this information may be transduced through different intracellular circuits in the same neuron. These findings raise questions about the intracellular mechanisms that preprocess and perhaps encode GPCR-mediated signals.</p>","PeriodicalId":49560,"journal":{"name":"Science Signaling","volume":null,"pages":null},"PeriodicalIF":7.3000,"publicationDate":"2011-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Signaling","FirstCategoryId":"99","ListUrlMain":"","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The skin is the largest sensory organ of the body. It is innervated by a diverse array of primary sensory neurons, including a heterogeneous subset of unmyelinated afferents called C fibers. C fibers, sometimes classified as nociceptors, can detect various painful stimuli, including temperature extremes. However, it is increasingly evident that these afferents respond to various pruritic stimuli and transmit information to the brain that is perceived as itch; this can subsequently drive scratching behavior. Although itch and pain are distinct sensations, they are closely related and can, under certain circumstances, antagonize each other. However, it is not clear precisely when, where, and how the processes generating these two sensations originate and how they are dissociated. Clues have come from the analysis of the activities of specific ligands and their receptors. New data indicate that specific pruritic ligands carrying both itch and pain information are selectively recognized by different G protein–coupled receptors (GPCRs), and this information may be transduced through different intracellular circuits in the same neuron. These findings raise questions about the intracellular mechanisms that preprocess and perhaps encode GPCR-mediated signals.

细胞内信号传导和痒痛感觉的起源。
皮肤是人体最大的感觉器官。它受多种初级感觉神经元的支配,包括一种称为C纤维的非髓鞘传入神经的异质子集。C纤维,有时被归类为伤害感受器,可以检测到各种疼痛刺激,包括极端温度。然而,越来越明显的是,这些传入对各种瘙痒刺激作出反应,并向大脑传递被感知为瘙痒的信息;这随后会导致抓挠行为。虽然痒和痛是截然不同的感觉,但它们密切相关,在某些情况下可以相互对抗。然而,目前还不清楚产生这两种感觉的过程是何时、何地、如何产生的,以及它们是如何分离的。线索来自对特定配体及其受体活性的分析。新的数据表明,携带瘙痒和疼痛信息的特定瘙痒配体可以被不同的G蛋白偶联受体(gpcr)选择性识别,并且这些信息可能通过同一神经元中不同的细胞内回路进行转导。这些发现提出了关于预处理和编码gpcr介导信号的细胞内机制的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Signaling
Science Signaling Biochemistry, Genetics and Molecular Biology-Molecular Biology
自引率
0.00%
发文量
148
期刊介绍: Science Signaling is a weekly, online multidisciplinary journal dedicated to the life sciences. Our editorial team's mission is to publish studies that elucidate the fundamental mechanisms underlying biological processes across various organisms. We prioritize research that offers novel insights into physiology, elucidates aberrant mechanisms leading to disease, identifies potential therapeutic targets and strategies, and characterizes the effects of drugs both in vitro and in vivo.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信