Jon V Clarke, Philip E Riches, Frederic Picard, Angela H Deakin
{"title":"Non-invasive computer-assisted measurement of knee alignment.","authors":"Jon V Clarke, Philip E Riches, Frederic Picard, Angela H Deakin","doi":"10.3109/10929088.2011.635217","DOIUrl":null,"url":null,"abstract":"<p><p>The quantification of knee alignment is a routine part of orthopaedic practice and is important for monitoring disease progression, planning interventional strategies, and follow-up of patients. Currently available technologies such as radiographic measurements have a number of drawbacks. The aim of this study was to validate a potentially improved technique for measuring knee alignment under different conditions. An image-free navigation system was adapted for non-invasive use through the development of external infrared tracker mountings. Stability was assessed by comparing the variance (F-test) of repeated mechanical femoro-tibial (MFT) angle measurements for a volunteer and a leg model. MFT angles were then measured supine, standing and with varus-valgus stress in asymptomatic volunteers who each underwent two separate registrations and repeated measurements for each condition. The mean difference and 95% limits of agreement were used to assess intra-registration and inter-registration repeatability. For multiple registrations the range of measurements for the external mountings was 1° larger than for the rigid model with statistically similar variance (p=0.34). Thirty volunteers were assessed (19 males, 11 females) with a mean age of 41 years (range: 20-65) and a mean BMI of 26 (range: 19-34). For intra-registration repeatability, consecutive coronal alignment readings agreed to almost ±1°, with up to ±0.5° loss of repeatability for coronal alignment measured before and after stress maneuvers, and a ±0.2° loss following stance trials. Sagittal alignment measurements were less repeatable overall by an approximate factor of two. Inter-registration agreement limits for coronal and sagittal supine MFT angles were ±1.6° and ±2.3°, respectively. Varus and valgus stress measurements agreed to within ±1.3° and ±1.1°, respectively. Agreement limits for standing MFT angles were ±2.9° (coronal) and ±5.0° (sagittal), which may have reflected a variation in stance between measurements. The system provided repeatable, real-time measurements of coronal and sagittal knee alignment under a number of dynamic, real-time conditions, offering a potential alternative to radiographs.</p>","PeriodicalId":50644,"journal":{"name":"Computer Aided Surgery","volume":"17 1","pages":"29-39"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/10929088.2011.635217","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Aided Surgery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/10929088.2011.635217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/11/30 0:00:00","PubModel":"Epub","JCR":"Q","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 25
Abstract
The quantification of knee alignment is a routine part of orthopaedic practice and is important for monitoring disease progression, planning interventional strategies, and follow-up of patients. Currently available technologies such as radiographic measurements have a number of drawbacks. The aim of this study was to validate a potentially improved technique for measuring knee alignment under different conditions. An image-free navigation system was adapted for non-invasive use through the development of external infrared tracker mountings. Stability was assessed by comparing the variance (F-test) of repeated mechanical femoro-tibial (MFT) angle measurements for a volunteer and a leg model. MFT angles were then measured supine, standing and with varus-valgus stress in asymptomatic volunteers who each underwent two separate registrations and repeated measurements for each condition. The mean difference and 95% limits of agreement were used to assess intra-registration and inter-registration repeatability. For multiple registrations the range of measurements for the external mountings was 1° larger than for the rigid model with statistically similar variance (p=0.34). Thirty volunteers were assessed (19 males, 11 females) with a mean age of 41 years (range: 20-65) and a mean BMI of 26 (range: 19-34). For intra-registration repeatability, consecutive coronal alignment readings agreed to almost ±1°, with up to ±0.5° loss of repeatability for coronal alignment measured before and after stress maneuvers, and a ±0.2° loss following stance trials. Sagittal alignment measurements were less repeatable overall by an approximate factor of two. Inter-registration agreement limits for coronal and sagittal supine MFT angles were ±1.6° and ±2.3°, respectively. Varus and valgus stress measurements agreed to within ±1.3° and ±1.1°, respectively. Agreement limits for standing MFT angles were ±2.9° (coronal) and ±5.0° (sagittal), which may have reflected a variation in stance between measurements. The system provided repeatable, real-time measurements of coronal and sagittal knee alignment under a number of dynamic, real-time conditions, offering a potential alternative to radiographs.
期刊介绍:
The scope of Computer Aided Surgery encompasses all fields within surgery, as well as biomedical imaging and instrumentation, and digital technology employed as an adjunct to imaging in diagnosis, therapeutics, and surgery. Topics featured include frameless as well as conventional stereotaxic procedures, surgery guided by ultrasound, image guided focal irradiation, robotic surgery, and other therapeutic interventions that are performed with the use of digital imaging technology.