Identification of significant genes in genomics using Bayesian variable selection methods.

Q2 Biochemistry, Genetics and Molecular Biology
Eugene Lin, Lung-Cheng Huang
{"title":"Identification of significant genes in genomics using Bayesian variable selection methods.","authors":"Eugene Lin,&nbsp;Lung-Cheng Huang","doi":"10.2147/aabc.s3624","DOIUrl":null,"url":null,"abstract":"<p><p>In the studies of genomics, it is essential to select a small number of genes that are more significant than the others for research ranging from candidate gene studies to genome-wide association studies. In this study, we proposed a Bayesian method for identifying the promising candidate genes that are significantly more influential than the others. We employed the framework of variable selection and a Gibbs sampling based technique to identify significant genes. The proposed approach was applied to a genomics study for persons with chronic fatigue syndrome. Our studies show that the proposed Bayesian methodology is effective for deriving models for genomic studies and for providing information on significant genes.</p>","PeriodicalId":53584,"journal":{"name":"Advances and Applications in Bioinformatics and Chemistry","volume":"1 ","pages":"13-8"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2147/aabc.s3624","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances and Applications in Bioinformatics and Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/aabc.s3624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2008/7/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 11

Abstract

In the studies of genomics, it is essential to select a small number of genes that are more significant than the others for research ranging from candidate gene studies to genome-wide association studies. In this study, we proposed a Bayesian method for identifying the promising candidate genes that are significantly more influential than the others. We employed the framework of variable selection and a Gibbs sampling based technique to identify significant genes. The proposed approach was applied to a genomics study for persons with chronic fatigue syndrome. Our studies show that the proposed Bayesian methodology is effective for deriving models for genomic studies and for providing information on significant genes.

Abstract Image

利用贝叶斯变量选择方法鉴定基因组学中的重要基因。
在基因组学研究中,从候选基因研究到全基因组关联研究,选择少数比其他基因更重要的基因是至关重要的。在这项研究中,我们提出了一种贝叶斯方法来识别有希望的候选基因,这些基因比其他基因具有更大的影响力。我们采用了变量选择框架和基于吉布斯采样的技术来鉴定重要基因。提出的方法被应用于慢性疲劳综合征患者的基因组学研究。我们的研究表明,所提出的贝叶斯方法对于导出基因组研究模型和提供重要基因信息是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances and Applications in Bioinformatics and Chemistry
Advances and Applications in Bioinformatics and Chemistry Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (miscellaneous)
CiteScore
6.50
自引率
0.00%
发文量
7
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信