Minimum-volume-constrained nonnegative matrix factorization: enhanced ability of learning parts.

IEEE transactions on neural networks Pub Date : 2011-10-01 Epub Date: 2011-08-30 DOI:10.1109/TNN.2011.2164621
Guoxu Zhou, Shengli Xie, Zuyuan Yang, Jun-Mei Yang, Zhaoshui He
{"title":"Minimum-volume-constrained nonnegative matrix factorization: enhanced ability of learning parts.","authors":"Guoxu Zhou,&nbsp;Shengli Xie,&nbsp;Zuyuan Yang,&nbsp;Jun-Mei Yang,&nbsp;Zhaoshui He","doi":"10.1109/TNN.2011.2164621","DOIUrl":null,"url":null,"abstract":"<p><p>Nonnegative matrix factorization (NMF) with minimum-volume-constraint (MVC) is exploited in this paper. Our results show that MVC can actually improve the sparseness of the results of NMF. This sparseness is L(0)-norm oriented and can give desirable results even in very weak sparseness situations, thereby leading to the significantly enhanced ability of learning parts of NMF. The close relation between NMF, sparse NMF, and the MVC_NMF is discussed first. Then two algorithms are proposed to solve the MVC_NMF model. One is called quadratic programming_MVC_NMF (QP_MVC_NMF) which is based on quadratic programming and the other is called negative glow_MVC_NMF (NG_MVC_NMF) because it uses multiplicative updates incorporating natural gradient ingeniously. The QP_MVC_NMF algorithm is quite efficient for small-scale problems and the NG_MVC_NMF algorithm is more suitable for large-scale problems. Simulations show the efficiency and validity of the proposed methods in applications of blind source separation and human face images analysis.</p>","PeriodicalId":13434,"journal":{"name":"IEEE transactions on neural networks","volume":"22 10","pages":"1626-37"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TNN.2011.2164621","citationCount":"63","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TNN.2011.2164621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/8/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63

Abstract

Nonnegative matrix factorization (NMF) with minimum-volume-constraint (MVC) is exploited in this paper. Our results show that MVC can actually improve the sparseness of the results of NMF. This sparseness is L(0)-norm oriented and can give desirable results even in very weak sparseness situations, thereby leading to the significantly enhanced ability of learning parts of NMF. The close relation between NMF, sparse NMF, and the MVC_NMF is discussed first. Then two algorithms are proposed to solve the MVC_NMF model. One is called quadratic programming_MVC_NMF (QP_MVC_NMF) which is based on quadratic programming and the other is called negative glow_MVC_NMF (NG_MVC_NMF) because it uses multiplicative updates incorporating natural gradient ingeniously. The QP_MVC_NMF algorithm is quite efficient for small-scale problems and the NG_MVC_NMF algorithm is more suitable for large-scale problems. Simulations show the efficiency and validity of the proposed methods in applications of blind source separation and human face images analysis.

最小体积约束非负矩阵分解:增强学习部件的能力。
研究了具有最小体积约束的非负矩阵分解(NMF)。我们的研究结果表明,MVC确实可以提高NMF结果的稀疏性。这种稀疏性是面向L(0)范数的,即使在非常弱的稀疏性情况下也能得到理想的结果,从而显著增强了NMF部分的学习能力。首先讨论了NMF、稀疏NMF和MVC_NMF之间的密切关系。然后提出了求解MVC_NMF模型的两种算法。一种叫做二次规划_mvc_nmf (QP_MVC_NMF),它是基于二次规划的,另一种叫做负glow_MVC_NMF (NG_MVC_NMF),因为它巧妙地使用了包含自然梯度的乘法更新。QP_MVC_NMF算法对小规模问题的处理效率较高,而NG_MVC_NMF算法更适合于大规模问题。仿真结果表明了该方法在盲源分离和人脸图像分析中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE transactions on neural networks
IEEE transactions on neural networks 工程技术-工程:电子与电气
自引率
0.00%
发文量
2
审稿时长
8.7 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信