Zhang neural network versus gradient neural network for solving time-varying linear inequalities.

IEEE transactions on neural networks Pub Date : 2011-10-01 Epub Date: 2011-08-15 DOI:10.1109/TNN.2011.2163318
Lin Xiao, Yunong Zhang
{"title":"Zhang neural network versus gradient neural network for solving time-varying linear inequalities.","authors":"Lin Xiao,&nbsp;Yunong Zhang","doi":"10.1109/TNN.2011.2163318","DOIUrl":null,"url":null,"abstract":"<p><p>By following Zhang design method, a new type of recurrent neural network [i.e., Zhang neural network (ZNN)] is presented, investigated, and analyzed for online solution of time-varying linear inequalities. Theoretical analysis is given on convergence properties of the proposed ZNN model. For comparative purposes, the conventional gradient neural network is developed and exploited for solving online time-varying linear inequalities as well. Computer simulation results further verify and demonstrate the efficacy, novelty, and superiority of such a ZNN model and its method for solving time-varying linear inequalities.</p>","PeriodicalId":13434,"journal":{"name":"IEEE transactions on neural networks","volume":"22 10","pages":"1676-84"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TNN.2011.2163318","citationCount":"111","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TNN.2011.2163318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/8/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 111

Abstract

By following Zhang design method, a new type of recurrent neural network [i.e., Zhang neural network (ZNN)] is presented, investigated, and analyzed for online solution of time-varying linear inequalities. Theoretical analysis is given on convergence properties of the proposed ZNN model. For comparative purposes, the conventional gradient neural network is developed and exploited for solving online time-varying linear inequalities as well. Computer simulation results further verify and demonstrate the efficacy, novelty, and superiority of such a ZNN model and its method for solving time-varying linear inequalities.

张神经网络与梯度神经网络求解时变线性不等式。
根据张氏设计方法,提出了一种用于时变线性不等式在线求解的新型递归神经网络[即张氏神经网络(ZNN)],并对其进行了研究和分析。理论分析了所提出的ZNN模型的收敛性。为了比较起见,本文还发展了传统的梯度神经网络,并将其用于求解在线时变线性不等式。计算机仿真结果进一步验证了该ZNN模型及其求解时变线性不等式方法的有效性、新颖性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE transactions on neural networks
IEEE transactions on neural networks 工程技术-工程:电子与电气
自引率
0.00%
发文量
2
审稿时长
8.7 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信