Mehrnoosh Hashemzadeh, Mohammad R Movahed, Wade A Russu, Ladan Soroush, Diné N Hill
{"title":"Novel design and synthesis of modified structure of carvedilol.","authors":"Mehrnoosh Hashemzadeh, Mohammad R Movahed, Wade A Russu, Ladan Soroush, Diné N Hill","doi":"10.2174/157489011797376988","DOIUrl":null,"url":null,"abstract":"<p><p>β-adrenergic blocking agents have been in use for nearly 40 years. β-blockers have been more thoroughly studied in the past twenty years as they have become commonly prescribed to heart failure patients. The class of β-blockers has grown considerably and has many pharmaceutical applications in patients with heart failure. Carvedilol has been the most effective beta-blocker in the treatment of the systolic heart failure. Carvedilol is a non-selective β- and α-blocker enantiomer with antioxidant effects that are attributed to its carbazole moiety. Carvedilol is taken twice daily because it is extensively metabolized and therefore loses its effectiveness due to a short half-life. Recently a long acting carvedilol has become available, as Coreg CR. Coreg CR is available for once-a-day administration as controlled-release oral capsules containing 10, 20, 40, or 80 mg carvedilol phosphate. The subject of the current report is to design a new structural analog of carvedilol that incorporates a protecting group such as a fluorine atom at position 8 of the carbazole ring for the purpose of blocking a critical metabolic pathway thus increasing its half life. This will follow discussion regarding current carvedilol patents. We believe that carvedilol activity will remain unchanged. The synthesis of 8-Fluoro-1, 2, 3, 9- tetrahydro-4H-carbazol-4-one, a key synthetic intermediate of the designed carvedilol analog, was carried out and successfully characterized.</p>","PeriodicalId":20905,"journal":{"name":"Recent patents on cardiovascular drug discovery","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent patents on cardiovascular drug discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/157489011797376988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
β-adrenergic blocking agents have been in use for nearly 40 years. β-blockers have been more thoroughly studied in the past twenty years as they have become commonly prescribed to heart failure patients. The class of β-blockers has grown considerably and has many pharmaceutical applications in patients with heart failure. Carvedilol has been the most effective beta-blocker in the treatment of the systolic heart failure. Carvedilol is a non-selective β- and α-blocker enantiomer with antioxidant effects that are attributed to its carbazole moiety. Carvedilol is taken twice daily because it is extensively metabolized and therefore loses its effectiveness due to a short half-life. Recently a long acting carvedilol has become available, as Coreg CR. Coreg CR is available for once-a-day administration as controlled-release oral capsules containing 10, 20, 40, or 80 mg carvedilol phosphate. The subject of the current report is to design a new structural analog of carvedilol that incorporates a protecting group such as a fluorine atom at position 8 of the carbazole ring for the purpose of blocking a critical metabolic pathway thus increasing its half life. This will follow discussion regarding current carvedilol patents. We believe that carvedilol activity will remain unchanged. The synthesis of 8-Fluoro-1, 2, 3, 9- tetrahydro-4H-carbazol-4-one, a key synthetic intermediate of the designed carvedilol analog, was carried out and successfully characterized.