Challenges in translating vascular tissue engineering to the pediatric clinic.

Q4 Neuroscience
Daniel R Duncan, Christopher K Breuer
{"title":"Challenges in translating vascular tissue engineering to the pediatric clinic.","authors":"Daniel R Duncan,&nbsp;Christopher K Breuer","doi":"10.1186/2045-824X-3-23","DOIUrl":null,"url":null,"abstract":"<p><p> The development of tissue-engineered vascular grafts for use in cardiovascular surgery holds great promise for improving outcomes in pediatric patients with complex congenital cardiac anomalies. Currently used synthetic grafts have a number of shortcomings in this setting but a tissue engineering approach has emerged in the past decade as a way to address these limitations. The first clinical trial of this technology showed that it is safe and effective but the primary mode of graft failure is stenosis. A variety of murine and large animal models have been developed to study and improve tissue engineering approaches with the hope of translating this technology into routine clinical use, but challenges remain. The purpose of this report is to address the clinical problem and review recent advances in vascular tissue engineering for pediatric applications. A deeper understanding of the mechanisms of neovessel formation and stenosis will enable rational design of improved tissue-engineered vascular grafts.</p>","PeriodicalId":23948,"journal":{"name":"Vascular Cell","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2045-824X-3-23","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vascular Cell","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/2045-824X-3-23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 25

Abstract

The development of tissue-engineered vascular grafts for use in cardiovascular surgery holds great promise for improving outcomes in pediatric patients with complex congenital cardiac anomalies. Currently used synthetic grafts have a number of shortcomings in this setting but a tissue engineering approach has emerged in the past decade as a way to address these limitations. The first clinical trial of this technology showed that it is safe and effective but the primary mode of graft failure is stenosis. A variety of murine and large animal models have been developed to study and improve tissue engineering approaches with the hope of translating this technology into routine clinical use, but challenges remain. The purpose of this report is to address the clinical problem and review recent advances in vascular tissue engineering for pediatric applications. A deeper understanding of the mechanisms of neovessel formation and stenosis will enable rational design of improved tissue-engineered vascular grafts.

Abstract Image

Abstract Image

将血管组织工程应用于儿科临床的挑战。
用于心血管手术的组织工程血管移植物的发展为改善复杂先天性心脏异常的儿科患者的预后带来了巨大的希望。目前使用的合成移植物在这种情况下有许多缺点,但是组织工程方法在过去十年中出现,作为解决这些限制的一种方法。该技术的首次临床试验表明它是安全有效的,但移植物失败的主要模式是狭窄。已经开发了各种小鼠和大型动物模型来研究和改进组织工程方法,希望将该技术转化为常规临床应用,但挑战仍然存在。本报告的目的是解决临床问题,并回顾血管组织工程儿科应用的最新进展。对新血管形成和狭窄机制的深入了解将有助于合理设计改进的组织工程血管移植物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Vascular Cell
Vascular Cell Neuroscience-Neurology
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信