{"title":"The noncoding genome: implications for ruminant reproductive biology.","authors":"D Tesfaye, M M Hossain, K Schellander","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Advances in the analyses of human and other higher eukaryotic genomes have disclosed a large fraction of the genetic material (ca 98%) which does not code for proteins. Major portion of this non-coding genome is in fact transcribed into an enormous repertoire of functional non coding RNA molecules (ncRNAs) rather than encoding any proteins. Recent fascinating and fast progress in bioinformatic, high-throughput sequencing and other biochemical approaches have fuelled rapid growth in our appreciation of the tremendous number, diversity and biological importance of these ncRNAs in the hidden layer of gene regulation both at transcriptional and post-transcriptional level. Broadly ncRNAs fall into three size classes namely, 20 nucleotides for the large family of microRNAs (miRNAs), to 25-200 nucleotides for other different families of small RNAs and finally to over thousands of nucleotides for macro ncRNAs involved in eukaryotic gene regulation. Among the ncRNAs that have revolutionized our understanding of eukaryotic gene expression, microRNAs (miRNAs) have recently been emphasized extensively with enormous potential for playing a pivotal role in disease, fertility and development. They are found to be potentially involved in various aspects of physiological regulation of reproductive tissues (testis, ovary, endometrium and oviduct), cells (sperm and oocytes) and embryonic development in addition to other body systems. Here, we review the recent work on miRNAs in details and some other small ncRNAs briefly in animal models focusing on their diverse roles in the physiology of reproductive cells and tissues together with their implications for ruminant reproductive biology.</p>","PeriodicalId":87420,"journal":{"name":"Society of Reproduction and Fertility supplement","volume":"67 ","pages":"73-93"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Society of Reproduction and Fertility supplement","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Advances in the analyses of human and other higher eukaryotic genomes have disclosed a large fraction of the genetic material (ca 98%) which does not code for proteins. Major portion of this non-coding genome is in fact transcribed into an enormous repertoire of functional non coding RNA molecules (ncRNAs) rather than encoding any proteins. Recent fascinating and fast progress in bioinformatic, high-throughput sequencing and other biochemical approaches have fuelled rapid growth in our appreciation of the tremendous number, diversity and biological importance of these ncRNAs in the hidden layer of gene regulation both at transcriptional and post-transcriptional level. Broadly ncRNAs fall into three size classes namely, 20 nucleotides for the large family of microRNAs (miRNAs), to 25-200 nucleotides for other different families of small RNAs and finally to over thousands of nucleotides for macro ncRNAs involved in eukaryotic gene regulation. Among the ncRNAs that have revolutionized our understanding of eukaryotic gene expression, microRNAs (miRNAs) have recently been emphasized extensively with enormous potential for playing a pivotal role in disease, fertility and development. They are found to be potentially involved in various aspects of physiological regulation of reproductive tissues (testis, ovary, endometrium and oviduct), cells (sperm and oocytes) and embryonic development in addition to other body systems. Here, we review the recent work on miRNAs in details and some other small ncRNAs briefly in animal models focusing on their diverse roles in the physiology of reproductive cells and tissues together with their implications for ruminant reproductive biology.