Parallel Materialization of Large ABoxes.

Sivaramakrishnan Narayanan, Umit Catalyurek, Tahsin Kurc, Joel Saltz
{"title":"Parallel Materialization of Large ABoxes.","authors":"Sivaramakrishnan Narayanan, Umit Catalyurek, Tahsin Kurc, Joel Saltz","doi":"10.1145/1529282.1529564","DOIUrl":null,"url":null,"abstract":"<p><p>This paper is concerned with the efficient computation of materialization in a knowledge base with a large ABox. We present a framework for performing this task on a shared-nothing parallel machine. The framework partitions TBox and ABox axioms using a min-min strategy. It utilizes an existing system, like SwiftOWLIM, to perform local inference computations and coordinates exchange of relevant information between processors. Our approach is able to exploit parallelism in the axioms of the TBox to achieve speedup in a cluster. However, this approach is limited by the complexity of the TBox. We present an experimental evaluation of the framework using datasets from the Lehigh University Benchmark (LUBM).</p>","PeriodicalId":74534,"journal":{"name":"Proceedings of the ... Symposium on Applied Computing. Symposium on Applied Computing","volume":" ","pages":"1257-1261"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3111083/pdf/nihms83719.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... Symposium on Applied Computing. Symposium on Applied Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1529282.1529564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is concerned with the efficient computation of materialization in a knowledge base with a large ABox. We present a framework for performing this task on a shared-nothing parallel machine. The framework partitions TBox and ABox axioms using a min-min strategy. It utilizes an existing system, like SwiftOWLIM, to perform local inference computations and coordinates exchange of relevant information between processors. Our approach is able to exploit parallelism in the axioms of the TBox to achieve speedup in a cluster. However, this approach is limited by the complexity of the TBox. We present an experimental evaluation of the framework using datasets from the Lehigh University Benchmark (LUBM).

大箱子的平行物质化。
本文研究了具有大型ABox的知识库中物化的高效计算问题。我们提出了一个框架,用于在无共享的并行机器上执行此任务。该框架使用最小最小策略划分TBox和ABox公理。它利用现有的系统,如SwiftOWLIM,来执行本地推理计算和协调处理器之间的相关信息交换。我们的方法能够利用TBox公理中的并行性来实现集群中的加速。然而,这种方法受到TBox复杂性的限制。我们使用来自利哈伊大学基准(LUBM)的数据集对该框架进行了实验评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信