Constitutive Modeling of Anisotropic Finite-Deformation Hyperelastic Behaviors of Soft Materials Reinforced by Tortuous Fibers.

Philip H Kao, Steven R Lammers, Kendall Hunter, Kurt R Stenmark, Robin Shandas, H Jerry Qi
{"title":"Constitutive Modeling of Anisotropic Finite-Deformation Hyperelastic Behaviors of Soft Materials Reinforced by Tortuous Fibers.","authors":"Philip H Kao,&nbsp;Steven R Lammers,&nbsp;Kendall Hunter,&nbsp;Kurt R Stenmark,&nbsp;Robin Shandas,&nbsp;H Jerry Qi","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Many biological materials are composites composed of a soft matrix reinforced with stiffer fibers. These stiffer fibers may have a tortuous shape and wind through the soft matrix. At small material deformation, these fibers deform in a bending mode and contribute little to the material stiffness; at large material deformation, these fibers deform in a stretching mode and induce a stiffening effect in the material behavior. The transition from bending mode deformation to stretching mode deformation yields a characteristic J-shape stress-strain curve. In addition, the spatial distribution of these fibers may render the composite an anisotropic behavior. In this paper, we present an anisotropic finite-deformation hyperelastic constitutive model for such materials. Here, the matrix is modeled as an isotropic neo-Hookean material. \"The behaviors of single tortuous fiber are represented by a crimped fiber model\". The anisotropic behavior is introduced by a structure tensor representing the effective orientation distribution of crimped fibers. Parametric studies show the effect of fiber tortuosity and fiber orientation distribution on the overall stress-strain behaviors of the materials.</p>","PeriodicalId":89495,"journal":{"name":"The international journal of structural changes in solids : mechanics and applications","volume":"2 1","pages":"19-29"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3150848/pdf/nihms-294247.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The international journal of structural changes in solids : mechanics and applications","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many biological materials are composites composed of a soft matrix reinforced with stiffer fibers. These stiffer fibers may have a tortuous shape and wind through the soft matrix. At small material deformation, these fibers deform in a bending mode and contribute little to the material stiffness; at large material deformation, these fibers deform in a stretching mode and induce a stiffening effect in the material behavior. The transition from bending mode deformation to stretching mode deformation yields a characteristic J-shape stress-strain curve. In addition, the spatial distribution of these fibers may render the composite an anisotropic behavior. In this paper, we present an anisotropic finite-deformation hyperelastic constitutive model for such materials. Here, the matrix is modeled as an isotropic neo-Hookean material. "The behaviors of single tortuous fiber are represented by a crimped fiber model". The anisotropic behavior is introduced by a structure tensor representing the effective orientation distribution of crimped fibers. Parametric studies show the effect of fiber tortuosity and fiber orientation distribution on the overall stress-strain behaviors of the materials.

Abstract Image

Abstract Image

Abstract Image

弯曲纤维增强软材料各向异性有限变形超弹性行为的本构建模。
许多生物材料是由较硬的纤维增强的软基质组成的复合材料。这些较硬的纤维可能具有弯曲的形状并缠绕在柔软的基质中。当材料变形较小时,这些纤维以弯曲方式变形,对材料刚度的贡献很小;在材料大变形时,这些纤维以拉伸方式变形,并在材料行为中引起硬化效应。从弯曲模态变形到拉伸模态变形的转变产生了特征的j型应力-应变曲线。此外,这些纤维的空间分布可能使复合材料具有各向异性行为。本文提出了这类材料的各向异性有限变形超弹性本构模型。在这里,矩阵被建模为各向同性的新胡克材料。“单根弯曲纤维的行为用卷曲纤维模型表示”。利用结构张量表示卷曲纤维的有效取向分布,引入了各向异性行为。参数化研究表明,纤维弯曲度和纤维取向分布对材料的整体应力-应变行为有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信