{"title":"AKAP5 and AKAP12 Form Homo-oligomers.","authors":"Shujuan Gao, Hsien-Yu Wang, Craig C Malbon","doi":"10.1186/1750-2187-6-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>A-kinase-anchoring proteins, AKAPs, constitute a family of scaffolds that play an essential role in catalyzing the spatial-temporal, dynamic interactions of protein kinase A, protein kinase C, tyrosine kinases, G-protein-coupled receptors and ion channels. We studied AKAP5 (AKAP79; MW ~47 kDa) and AKAP12 (gravin, SSECKS; MW ~191 kDa) to probe if these AKAP scaffolds oligomerize.</p><p><strong>Results: </strong>In gel analysis and sodium-dodecyl sulfate denaturation, AKAP12 behaved with a MW of a homo-dimer. Only in the presence of the chaotropic agent 8 M urea did gel analysis reveal a monomeric form of AKAP12. By separation by steric-exclusion chromatography, AKAP12 migrates with MW of ~840 kDa, suggestive of higher-order complexes such as a tetramer. Interestingly, the N-(1-840) and C-(840-1782) terminal regions of AKAP12 themselves retained the ability to form dimers, suggesting that the structural basis for the dimerization is not restricted to a single \"domain\" found within the molecule. In either sodium dodecyl sulfate or urea, AKAP5 displayed a relative mobility of a monomer, but by co-immunoprecipitation in native state was shown to oligomerize. When subjected to steric-exclusion chromatography, AKAP5 forms higher-order complexes with MW ~220 kDa, suggestive of tetrameric assemblies.</p><p><strong>Conclusion: </strong>Both AKAP5 and AKAP12 display the capacity to form supermolecular homo-oligomeric structures that likely influence the localization and function of these molecular scaffolds.</p>","PeriodicalId":35051,"journal":{"name":"Journal of Molecular Signaling","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3113324/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Signaling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/1750-2187-6-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Background: A-kinase-anchoring proteins, AKAPs, constitute a family of scaffolds that play an essential role in catalyzing the spatial-temporal, dynamic interactions of protein kinase A, protein kinase C, tyrosine kinases, G-protein-coupled receptors and ion channels. We studied AKAP5 (AKAP79; MW ~47 kDa) and AKAP12 (gravin, SSECKS; MW ~191 kDa) to probe if these AKAP scaffolds oligomerize.
Results: In gel analysis and sodium-dodecyl sulfate denaturation, AKAP12 behaved with a MW of a homo-dimer. Only in the presence of the chaotropic agent 8 M urea did gel analysis reveal a monomeric form of AKAP12. By separation by steric-exclusion chromatography, AKAP12 migrates with MW of ~840 kDa, suggestive of higher-order complexes such as a tetramer. Interestingly, the N-(1-840) and C-(840-1782) terminal regions of AKAP12 themselves retained the ability to form dimers, suggesting that the structural basis for the dimerization is not restricted to a single "domain" found within the molecule. In either sodium dodecyl sulfate or urea, AKAP5 displayed a relative mobility of a monomer, but by co-immunoprecipitation in native state was shown to oligomerize. When subjected to steric-exclusion chromatography, AKAP5 forms higher-order complexes with MW ~220 kDa, suggestive of tetrameric assemblies.
Conclusion: Both AKAP5 and AKAP12 display the capacity to form supermolecular homo-oligomeric structures that likely influence the localization and function of these molecular scaffolds.
期刊介绍:
Journal of Molecular Signaling is an open access, peer-reviewed online journal that encompasses all aspects of molecular signaling. Molecular signaling is an exponentially growing field that encompasses different molecular aspects of cell signaling underlying normal and pathological conditions. Specifically, the research area of the journal is on the normal or aberrant molecular mechanisms involving receptors, G-proteins, kinases, phosphatases, and transcription factors in regulating cell proliferation, differentiation, apoptosis, and oncogenesis in mammalian cells. This area also covers the genetic and epigenetic changes that modulate the signaling properties of cells and the resultant physiological conditions.