Recent patents on biclustering algorithms for gene expression data analysis.

Alan Wee-Chung Liew, Ngai-Fong Law, Hong Yan
{"title":"Recent patents on biclustering algorithms for gene expression data analysis.","authors":"Alan Wee-Chung Liew,&nbsp;Ngai-Fong Law,&nbsp;Hong Yan","doi":"10.2174/187221511796392097","DOIUrl":null,"url":null,"abstract":"<p><p>In DNA microarray experiments, discovering groups of genes that share similar transcriptional characteristics is instrumental in functional annotation, tissue classification and motif identification. However, in many situations a subset of genes only exhibits a consistent pattern over a subset of conditions. Although used extensively in gene expression data analysis, conventional clustering algorithms that consider the entire row or column in an expression matrix can therefore fail to detect useful patterns in the data. Recently, biclustering has been proposed as a powerful computational tool to detect subsets of genes that exhibit consistent pattern over subsets of conditions. In this article, we review several recent patents in bicluster analysis, and in particular, highlight a recent patent from our group about a novel geometric-based biclustering method that handles the class of bicluster patterns with linear coherent variation across the row and/or column dimension. This class of bicluster patterns is of particular importance since it subsumes all constant, additive, and multiplicative bicluster patterns normally used in gene expression data analysis.</p>","PeriodicalId":74646,"journal":{"name":"Recent patents on DNA & gene sequences","volume":"5 2","pages":"117-25"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2174/187221511796392097","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent patents on DNA & gene sequences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/187221511796392097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In DNA microarray experiments, discovering groups of genes that share similar transcriptional characteristics is instrumental in functional annotation, tissue classification and motif identification. However, in many situations a subset of genes only exhibits a consistent pattern over a subset of conditions. Although used extensively in gene expression data analysis, conventional clustering algorithms that consider the entire row or column in an expression matrix can therefore fail to detect useful patterns in the data. Recently, biclustering has been proposed as a powerful computational tool to detect subsets of genes that exhibit consistent pattern over subsets of conditions. In this article, we review several recent patents in bicluster analysis, and in particular, highlight a recent patent from our group about a novel geometric-based biclustering method that handles the class of bicluster patterns with linear coherent variation across the row and/or column dimension. This class of bicluster patterns is of particular importance since it subsumes all constant, additive, and multiplicative bicluster patterns normally used in gene expression data analysis.

基因表达数据分析的双聚类算法的最新专利。
在DNA微阵列实验中,发现具有相似转录特征的基因群有助于功能注释、组织分类和基序鉴定。然而,在许多情况下,基因的一个子集只在一个子集的条件下表现出一致的模式。尽管在基因表达数据分析中广泛使用,但考虑表达矩阵中整行或整列的传统聚类算法因此无法检测到数据中的有用模式。最近,双聚类被提出作为一种强大的计算工具来检测在条件子集中表现出一致模式的基因子集。在本文中,我们回顾了最近在双聚类分析方面的几项专利,特别强调了我们小组最近的一项专利,该专利是关于一种新的基于几何的双聚类方法,该方法处理具有跨行和/或列维线性相干变化的双聚类模式。这类双聚类模式是特别重要的,因为它包含了通常用于基因表达数据分析的所有常数、加法和乘法双聚类模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信