A semantic image annotation model to enable integrative translational research.

Daniel L Rubin, Pattanasak Mongkolwat, David S Channin
{"title":"A semantic image annotation model to enable integrative translational research.","authors":"Daniel L Rubin,&nbsp;Pattanasak Mongkolwat,&nbsp;David S Channin","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Integrating and relating images with clinical and molecular data is a crucial activity in translational research, but challenging because the information in images is not explicit in standard computer-accessible formats. We have developed an ontology-based representation of the semantic contents of radiology images called AIM (Annotation and Image Markup). AIM specifies the quantitative and qualitative content that researchers extract from images. The AIM ontology enables semantic image annotation and markup, specifying the entities and relations necessary to describe images. AIM annotations, represented as instances in the ontology, enable key use cases for images in translational research such as disease status assessment, query, and inter-observer variation analysis. AIM will enable ontology-based query and mining of images, and integration of images with data in other ontology-annotated bioinformatics databases. Our ultimate goal is to enable researchers to link images with related scientific data so they can learn the biological and physiological significance of the image content.</p>","PeriodicalId":89276,"journal":{"name":"Summit on translational bioinformatics","volume":"2009 ","pages":"106-10"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3041574/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Summit on translational bioinformatics","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Integrating and relating images with clinical and molecular data is a crucial activity in translational research, but challenging because the information in images is not explicit in standard computer-accessible formats. We have developed an ontology-based representation of the semantic contents of radiology images called AIM (Annotation and Image Markup). AIM specifies the quantitative and qualitative content that researchers extract from images. The AIM ontology enables semantic image annotation and markup, specifying the entities and relations necessary to describe images. AIM annotations, represented as instances in the ontology, enable key use cases for images in translational research such as disease status assessment, query, and inter-observer variation analysis. AIM will enable ontology-based query and mining of images, and integration of images with data in other ontology-annotated bioinformatics databases. Our ultimate goal is to enable researchers to link images with related scientific data so they can learn the biological and physiological significance of the image content.

Abstract Image

Abstract Image

Abstract Image

一种语义图像标注模型,支持综合翻译研究。
将图像与临床和分子数据整合和关联是转化研究中的一项重要活动,但具有挑战性,因为图像中的信息在标准计算机可访问格式中并不明确。我们已经开发了一种基于本体的放射学图像语义内容表示,称为AIM(注释和图像标记)。AIM规定了研究人员从图像中提取的定量和定性内容。AIM本体支持语义图像注释和标记,指定描述图像所需的实体和关系。AIM注释在本体中表示为实例,为翻译研究中的图像提供关键用例,如疾病状态评估、查询和观察者间差异分析。AIM将实现基于本体的图像查询和挖掘,以及将图像与其他带有本体注释的生物信息学数据库中的数据集成。我们的最终目标是使研究人员能够将图像与相关的科学数据联系起来,从而了解图像内容的生物学和生理学意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信