An automated approach to calculating the daily dose of tacrolimus in electronic health records.

Hua Xu, Son Doan, Kelly A Birdwell, James D Cowan, Andrew J Vincz, David W Haas, Melissa A Basford, Joshua C Denny
{"title":"An automated approach to calculating the daily dose of tacrolimus in electronic health records.","authors":"Hua Xu,&nbsp;Son Doan,&nbsp;Kelly A Birdwell,&nbsp;James D Cowan,&nbsp;Andrew J Vincz,&nbsp;David W Haas,&nbsp;Melissa A Basford,&nbsp;Joshua C Denny","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Clinical research often requires extracting detailed drug information, such as medication names and dosages, from Electronic Health Records (EHR). Since medication information is often recorded as both structured and unstructured formats in the EHR, extracting all the relevant drug mentions and determining the daily dose of a medication for a selected patient at a given date can be a challenging and time-consuming task. In this paper, we present an automated approach using natural language processing to calculate daily doses of medications mentioned in clinical text, using tacrolimus as a test case. We evaluated this method using data sets from four different types of unstructured clinical data. Our results showed that the system achieved precisions of 0.90-1.00 and recalls of 0.81-1.00.</p>","PeriodicalId":89276,"journal":{"name":"Summit on translational bioinformatics","volume":"2010 ","pages":"71-5"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3041548/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Summit on translational bioinformatics","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Clinical research often requires extracting detailed drug information, such as medication names and dosages, from Electronic Health Records (EHR). Since medication information is often recorded as both structured and unstructured formats in the EHR, extracting all the relevant drug mentions and determining the daily dose of a medication for a selected patient at a given date can be a challenging and time-consuming task. In this paper, we present an automated approach using natural language processing to calculate daily doses of medications mentioned in clinical text, using tacrolimus as a test case. We evaluated this method using data sets from four different types of unstructured clinical data. Our results showed that the system achieved precisions of 0.90-1.00 and recalls of 0.81-1.00.

Abstract Image

Abstract Image

电子健康记录中计算他克莫司日剂量的自动方法。
临床研究通常需要从电子健康记录(EHR)中提取详细的药物信息,例如药物名称和剂量。由于药物信息通常以结构化和非结构化格式记录在EHR中,因此提取所有相关药物提及并确定特定患者在给定日期的药物日剂量可能是一项具有挑战性且耗时的任务。在本文中,我们提出了一种使用自然语言处理的自动化方法来计算临床文本中提到的药物的每日剂量,使用他克莫司作为测试案例。我们使用来自四种不同类型的非结构化临床数据集来评估这种方法。结果表明,该系统的精密度为0.90 ~ 1.00,召回率为0.81 ~ 1.00。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信