Daniel Briem, Andreas H Ruecker, Joerg Neumann, Matthias Gebauer, Daniel Kendoff, Thorsten Gehrke, Wolfgang Lehmann, Udo Schumacher, Johannes M Rueger, Lars G Grossterlinden
{"title":"3D fluoroscopic navigated reaming of the glenoid for total shoulder arthroplasty (TSA).","authors":"Daniel Briem, Andreas H Ruecker, Joerg Neumann, Matthias Gebauer, Daniel Kendoff, Thorsten Gehrke, Wolfgang Lehmann, Udo Schumacher, Johannes M Rueger, Lars G Grossterlinden","doi":"10.3109/10929088.2010.546076","DOIUrl":null,"url":null,"abstract":"<p><p>Survival rates for total shoulder arthroplasty are critically dependent on the correct placement of the glenoid component. Especially in osteoarthritis, pathological version of the glenoid occurs frequently and has to be corrected surgically by eccentric reaming of the glenoid brim. The aim of our study was to evaluate whether eccentric reaming of the glenoid can be achieved more accurately by a novel computer assisted technique. Procedures were conducted on 10 paired human cadaveric specimens presenting glenoids with neutral version. To identify the correction potential of the navigated technique compared to the standard procedure, asymmetric reaming of the glenoid to create a version of -10° was defined as the target. In the navigated group, asymmetric reaming was guided by a 3D fluoroscopic technique. Postoperative 3D scans revealed greater accuracy for the eccentric reaming procedure in the navigated group compared to the freehand group, resulting in glenoid version of -9.8 ± 3.8° and -5.1 ± 4.1°, respectively (p < 0.05). Furthermore, deviation from preoperative planning was significantly reduced in the navigated group. These data indicate that our navigated procedure offers an excellent tool for supporting glenoid replacement in TSA.</p>","PeriodicalId":50644,"journal":{"name":"Computer Aided Surgery","volume":"16 2","pages":"93-9"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/10929088.2010.546076","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Aided Surgery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/10929088.2010.546076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/1/10 0:00:00","PubModel":"Epub","JCR":"Q","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 26
Abstract
Survival rates for total shoulder arthroplasty are critically dependent on the correct placement of the glenoid component. Especially in osteoarthritis, pathological version of the glenoid occurs frequently and has to be corrected surgically by eccentric reaming of the glenoid brim. The aim of our study was to evaluate whether eccentric reaming of the glenoid can be achieved more accurately by a novel computer assisted technique. Procedures were conducted on 10 paired human cadaveric specimens presenting glenoids with neutral version. To identify the correction potential of the navigated technique compared to the standard procedure, asymmetric reaming of the glenoid to create a version of -10° was defined as the target. In the navigated group, asymmetric reaming was guided by a 3D fluoroscopic technique. Postoperative 3D scans revealed greater accuracy for the eccentric reaming procedure in the navigated group compared to the freehand group, resulting in glenoid version of -9.8 ± 3.8° and -5.1 ± 4.1°, respectively (p < 0.05). Furthermore, deviation from preoperative planning was significantly reduced in the navigated group. These data indicate that our navigated procedure offers an excellent tool for supporting glenoid replacement in TSA.
期刊介绍:
The scope of Computer Aided Surgery encompasses all fields within surgery, as well as biomedical imaging and instrumentation, and digital technology employed as an adjunct to imaging in diagnosis, therapeutics, and surgery. Topics featured include frameless as well as conventional stereotaxic procedures, surgery guided by ultrasound, image guided focal irradiation, robotic surgery, and other therapeutic interventions that are performed with the use of digital imaging technology.