Linked Exploratory Visualizations for Uncertain MR Spectroscopy Data.

David Feng, Lester Kwock, Yueh Lee, Russell M Taylor
{"title":"Linked Exploratory Visualizations for Uncertain MR Spectroscopy Data.","authors":"David Feng, Lester Kwock, Yueh Lee, Russell M Taylor","doi":"10.1117/12.839818","DOIUrl":null,"url":null,"abstract":"<p><p>We present a system for visualizing magnetic resonance spectroscopy (MRS) data sets. Using MRS, radiologists generate multiple 3D scalar fields of metabolite concentrations within the brain and compare them to anatomical magnetic resonance imaging. By understanding the relationship between metabolic makeup and anatomical structure, radiologists hope to better diagnose and treat tumors and lesions. Our system consists of three linked visualizations: a spatial glyph-based technique we call Scaled Data-Driven Spheres, a parallel coordinates visualization augmented to incorporate uncertainty in the data, and a slice plane for accurate data value extraction. The parallel coordinates visualization uses specialized brush interactions designed to help users identify nontrivial linear relationships between scalar fields. We describe two novel contributions to parallel coordinates visualizations: linear function brushing and new axis construction. Users have discovered significant relationships among metabolites and anatomy by linking interactions between the three visualizations.</p>","PeriodicalId":89305,"journal":{"name":"Visualization and data analysis","volume":"7530 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2010-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2997734/pdf/nihms154699.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visualization and data analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.839818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a system for visualizing magnetic resonance spectroscopy (MRS) data sets. Using MRS, radiologists generate multiple 3D scalar fields of metabolite concentrations within the brain and compare them to anatomical magnetic resonance imaging. By understanding the relationship between metabolic makeup and anatomical structure, radiologists hope to better diagnose and treat tumors and lesions. Our system consists of three linked visualizations: a spatial glyph-based technique we call Scaled Data-Driven Spheres, a parallel coordinates visualization augmented to incorporate uncertainty in the data, and a slice plane for accurate data value extraction. The parallel coordinates visualization uses specialized brush interactions designed to help users identify nontrivial linear relationships between scalar fields. We describe two novel contributions to parallel coordinates visualizations: linear function brushing and new axis construction. Users have discovered significant relationships among metabolites and anatomy by linking interactions between the three visualizations.

Abstract Image

Abstract Image

Abstract Image

链接探索性可视化不确定磁共振光谱数据。
我们提出了一个系统的可视化磁共振光谱(MRS)数据集。使用MRS,放射科医生生成大脑内代谢物浓度的多个3D标量场,并将其与解剖磁共振成像进行比较。通过了解代谢组成和解剖结构之间的关系,放射科医生希望更好地诊断和治疗肿瘤和病变。我们的系统由三个相连的可视化组成:一个基于空间字形的技术,我们称之为缩放数据驱动球体,一个平行坐标可视化增强,以纳入数据中的不确定性,以及一个切片平面,用于准确的数据值提取。并行坐标可视化使用专门的笔刷交互,旨在帮助用户识别标量字段之间的非平凡线性关系。我们描述了平行坐标可视化的两个新贡献:线性函数涂刷和新的轴构造。用户通过链接三种可视化之间的相互作用,发现了代谢物和解剖学之间的重要关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信