Initialization Parameter Sweep in ATHENA: Optimizing Neural Networks for Detecting Gene-Gene Interactions in the Presence of Small Main Effects.

Emily R Holzinger, Carrie C Buchanan, Scott M Dudek, Eric C Torstenson, Stephen D Turner, Marylyn D Ritchie
{"title":"Initialization Parameter Sweep in ATHENA: Optimizing Neural Networks for Detecting Gene-Gene Interactions in the Presence of Small Main Effects.","authors":"Emily R Holzinger,&nbsp;Carrie C Buchanan,&nbsp;Scott M Dudek,&nbsp;Eric C Torstenson,&nbsp;Stephen D Turner,&nbsp;Marylyn D Ritchie","doi":"10.1145/1830483.1830519","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advances in genotyping technology have led to the generation of an enormous quantity of genetic data. Traditional methods of statistical analysis have proved insufficient in extracting all of the information about the genetic components of common, complex human diseases. A contributing factor to the problem of analysis is that amongst the small main effects of each single gene on disease susceptibility, there are non-linear, gene-gene interactions that can be difficult for traditional, parametric analyses to detect. In addition, exhaustively searching all multi-locus combinations has proved computationally impractical. Novel strategies for analysis have been developed to address these issues. The Analysis Tool for Heritable and Environmental Network Associations (ATHENA) is an analytical tool that incorporates grammatical evolution neural networks (GENN) to detect interactions among genetic factors. Initial parameters define how the evolutionary process will be implemented. This research addresses how different parameter settings affect detection of disease models involving interactions. In the current study, we iterate over multiple parameter values to determine which combinations appear optimal for detecting interactions in simulated data for multiple genetic models. Our results indicate that the factors that have the greatest influence on detection are: input variable encoding, population size, and parallel computation.</p>","PeriodicalId":88876,"journal":{"name":"Genetic and Evolutionary Computation Conference : [proceedings]. Genetic and Evolutionary Computation Conference","volume":"12 ","pages":"203-210"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/1830483.1830519","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic and Evolutionary Computation Conference : [proceedings]. Genetic and Evolutionary Computation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1830483.1830519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Recent advances in genotyping technology have led to the generation of an enormous quantity of genetic data. Traditional methods of statistical analysis have proved insufficient in extracting all of the information about the genetic components of common, complex human diseases. A contributing factor to the problem of analysis is that amongst the small main effects of each single gene on disease susceptibility, there are non-linear, gene-gene interactions that can be difficult for traditional, parametric analyses to detect. In addition, exhaustively searching all multi-locus combinations has proved computationally impractical. Novel strategies for analysis have been developed to address these issues. The Analysis Tool for Heritable and Environmental Network Associations (ATHENA) is an analytical tool that incorporates grammatical evolution neural networks (GENN) to detect interactions among genetic factors. Initial parameters define how the evolutionary process will be implemented. This research addresses how different parameter settings affect detection of disease models involving interactions. In the current study, we iterate over multiple parameter values to determine which combinations appear optimal for detecting interactions in simulated data for multiple genetic models. Our results indicate that the factors that have the greatest influence on detection are: input variable encoding, population size, and parallel computation.

Abstract Image

Abstract Image

Abstract Image

雅典娜初始化参数扫描:优化神经网络检测基因-基因相互作用的存在小主效应。
基因分型技术的最新进展导致了大量遗传数据的产生。传统的统计分析方法已被证明不足以提取有关常见、复杂的人类疾病的遗传成分的所有信息。造成分析问题的一个因素是,在每个单一基因对疾病易感性的微小主要影响中,存在非线性的基因-基因相互作用,这对于传统的参数分析来说很难检测到。此外,穷举搜索所有多位点组合已被证明在计算上是不切实际的。为了解决这些问题,已经开发了新的分析策略。遗传与环境网络关联分析工具(ATHENA)是一种结合语法进化神经网络(GENN)来检测遗传因素之间相互作用的分析工具。初始参数定义了进化过程将如何实现。这项研究解决了不同的参数设置如何影响涉及相互作用的疾病模型的检测。在目前的研究中,我们对多个参数值进行迭代,以确定在多个遗传模型的模拟数据中,哪种组合最适合检测相互作用。我们的研究结果表明,对检测影响最大的因素是:输入变量编码、人口规模和并行计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信