Position and Orientation Distributions for Non-Reversal Random Walks using Space-Group Fourier Transforms.

Aris Skliros, Wooram Park, Gregory S Chirikjian
{"title":"Position and Orientation Distributions for Non-Reversal Random Walks using Space-Group Fourier Transforms.","authors":"Aris Skliros,&nbsp;Wooram Park,&nbsp;Gregory S Chirikjian","doi":"10.18409/jas.v1i1.6","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents an efficient group-theoretic approach for computing the statistics of non-reversal random walks (NRRW) on lattices. These framed walks evolve on proper crystallographic space groups. In a previous paper we introduced a convolution method for computing the statistics of NRRWs in which the convolution product is defined relative to the space-group operation. Here we use the corresponding concept of the fast Fourier transform for functions on crystallographic space groups together with a non-Abelian version of the convolution theorem. We develop the theory behind this technique and present numerical results for two-dimensional and three-dimensional lattices (square, cubic and diamond). In order to verify our results, the statistics of the end-to-end distance and the probability of ring closure are calculated and compared with results obtained in the literature for the random walks for which closed-form expressions exist.</p>","PeriodicalId":41066,"journal":{"name":"Journal of Algebraic Statistics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2965612/pdf/nihms-224203.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18409/jas.v1i1.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents an efficient group-theoretic approach for computing the statistics of non-reversal random walks (NRRW) on lattices. These framed walks evolve on proper crystallographic space groups. In a previous paper we introduced a convolution method for computing the statistics of NRRWs in which the convolution product is defined relative to the space-group operation. Here we use the corresponding concept of the fast Fourier transform for functions on crystallographic space groups together with a non-Abelian version of the convolution theorem. We develop the theory behind this technique and present numerical results for two-dimensional and three-dimensional lattices (square, cubic and diamond). In order to verify our results, the statistics of the end-to-end distance and the probability of ring closure are calculated and compared with results obtained in the literature for the random walks for which closed-form expressions exist.

Abstract Image

Abstract Image

Abstract Image

使用空间群傅里叶变换的非反转随机漫步的位置和方向分布。
本文提出了一种计算格上非反转随机漫步统计量的有效群论方法。这些框架行走在适当的晶体学空间群上演化。在之前的一篇论文中,我们介绍了一种计算NRRWs统计量的卷积方法,其中卷积积是相对于空间群运算定义的。在这里,我们使用了晶体空间群上函数的快速傅里叶变换的相应概念以及卷积定理的非阿贝尔版本。我们发展了这种技术背后的理论,并给出了二维和三维晶格(方形、立方和菱形)的数值结果。为了验证我们的结果,计算了端到端距离和环闭合概率的统计量,并与文献中存在封闭形式表达式的随机漫步结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebraic Statistics
Journal of Algebraic Statistics STATISTICS & PROBABILITY-
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信