{"title":"Quasi-static and harmonic indentation of osteonal bone.","authors":"S S Huja, J L Hay, A M Rummel, F M Beck","doi":"10.4061/2010/736830","DOIUrl":null,"url":null,"abstract":"<p><strong>Unlabelled: </strong>The purpose of the study was to compare Quasi-Static (QS) and harmonic (CSM) methods of indentation testing. Bone sections were obtained from mid-femoral diaphyses of dogs which received a pair of calcein labels. Labeled (n = 35) and unlabeled (n = 112) osteons were identified. Indentation modulus (IM) and hardness (H) for the CSM method were collected during the entire loading cycle to peak depth, while IM and H for QS method were calculated at a peak depth of 500 nm.</p><p><strong>Results: </strong>The mean (SD) of the IM and H for labeled osteons were as follows: QS IM = 15.3 GPa (3.85) versus CSM IM = 14.7 GPa (3.58); P = .52 and QS H = .39 GPa (.171) versus CSM H = .42 GPa (.146); P = .32. The mean (SD) of the IM and H for unlabeled osteons were as follows: QS IM = 21.5 GPa (2.80) versus CSM IM = 20.6 GPa (2.53); P = .054 and QS H = .64 GPa (.117) versus CSM H = .70 GPa (.120); P = .017. There was no difference in IM and H for the two methods, except for H of the unlabeled osteons. In addition, for the CSM method, IM at 100 nm, 200 nm, 300 nm, 400 nm and 500 nm were not statistically significant different (P = .06). Bone is viscoelastic at an organ level. However, this component of its behavior was not detected at the length scale examined.</p>","PeriodicalId":88916,"journal":{"name":"Journal of dental biomechanics","volume":"2010 ","pages":"736830"},"PeriodicalIF":0.0000,"publicationDate":"2010-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2958426/pdf/","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of dental biomechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4061/2010/736830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Unlabelled: The purpose of the study was to compare Quasi-Static (QS) and harmonic (CSM) methods of indentation testing. Bone sections were obtained from mid-femoral diaphyses of dogs which received a pair of calcein labels. Labeled (n = 35) and unlabeled (n = 112) osteons were identified. Indentation modulus (IM) and hardness (H) for the CSM method were collected during the entire loading cycle to peak depth, while IM and H for QS method were calculated at a peak depth of 500 nm.
Results: The mean (SD) of the IM and H for labeled osteons were as follows: QS IM = 15.3 GPa (3.85) versus CSM IM = 14.7 GPa (3.58); P = .52 and QS H = .39 GPa (.171) versus CSM H = .42 GPa (.146); P = .32. The mean (SD) of the IM and H for unlabeled osteons were as follows: QS IM = 21.5 GPa (2.80) versus CSM IM = 20.6 GPa (2.53); P = .054 and QS H = .64 GPa (.117) versus CSM H = .70 GPa (.120); P = .017. There was no difference in IM and H for the two methods, except for H of the unlabeled osteons. In addition, for the CSM method, IM at 100 nm, 200 nm, 300 nm, 400 nm and 500 nm were not statistically significant different (P = .06). Bone is viscoelastic at an organ level. However, this component of its behavior was not detected at the length scale examined.