{"title":"Menstrual irregularities and energy deficiency in physically active women: the role of ghrelin, PYY and adipocytokines.","authors":"Jennifer L Scheid, Mary Jane De Souza","doi":"10.1159/000321974","DOIUrl":null,"url":null,"abstract":"<p><p>Menstrual cycle irregularities are often observed among physically active women and athletes who participate in physical activity ranging from recreational to competitive exercise training. Further, such irregularities have been casually linked to an energy deficiency where caloric intake is inadequate for exercise energy expenditure resulting in a suppressive effect on growth and reproduction. Adaptations consistent with chronic energy deficiency, including reductions in resting energy expenditure and total triiodothyronine, have been observed in exercising women with functional hypothalamic amenorrhea (FHA). Gut peptides and adipocytokines also appear to be altered in exercising women with FHA and have been hypothesized to be involved in the etiology of FHA. Ghrelin concentrations are elevated in exercising women with FHA. Interestingly, while fasting ghrelin, an orexigenic peptide, is elevated in women with FHA, PYY, an orexigenic peptide, is paradoxically also elevated in women with anorexia nervosa and exercising women with FHA. Leptin, an adipocytokine, is also suppressed in FHA associated with exercise and anorexia. A critical leptin concentration threshold is suggested to be necessary for regular menses to occur. Ghrelin, PYY, and leptin all have the ability to cross the blood brain barrier and, in the hypothalamus, can modulate appetite and food intake, and are hypothesized to affect the hypothalamic-pituitary-ovarian axis. Future studies are needed to determine if ghrelin, PYY, or leptin play a direct role in the regulation of the hypothalamic-pituitary-ovarian axis, and if these signals can be altered by improving energy status secondary to increasing caloric intake and initiate the reversal of amenorrhea.</p>","PeriodicalId":18475,"journal":{"name":"Medicine and sport science","volume":"55 ","pages":"82-102"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000321974","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicine and sport science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000321974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2010/10/14 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42
Abstract
Menstrual cycle irregularities are often observed among physically active women and athletes who participate in physical activity ranging from recreational to competitive exercise training. Further, such irregularities have been casually linked to an energy deficiency where caloric intake is inadequate for exercise energy expenditure resulting in a suppressive effect on growth and reproduction. Adaptations consistent with chronic energy deficiency, including reductions in resting energy expenditure and total triiodothyronine, have been observed in exercising women with functional hypothalamic amenorrhea (FHA). Gut peptides and adipocytokines also appear to be altered in exercising women with FHA and have been hypothesized to be involved in the etiology of FHA. Ghrelin concentrations are elevated in exercising women with FHA. Interestingly, while fasting ghrelin, an orexigenic peptide, is elevated in women with FHA, PYY, an orexigenic peptide, is paradoxically also elevated in women with anorexia nervosa and exercising women with FHA. Leptin, an adipocytokine, is also suppressed in FHA associated with exercise and anorexia. A critical leptin concentration threshold is suggested to be necessary for regular menses to occur. Ghrelin, PYY, and leptin all have the ability to cross the blood brain barrier and, in the hypothalamus, can modulate appetite and food intake, and are hypothesized to affect the hypothalamic-pituitary-ovarian axis. Future studies are needed to determine if ghrelin, PYY, or leptin play a direct role in the regulation of the hypothalamic-pituitary-ovarian axis, and if these signals can be altered by improving energy status secondary to increasing caloric intake and initiate the reversal of amenorrhea.