Synthesis and characterization of highly photoresponsive fullerenyl dyads with a close chromophore antenna-C(60) contact and effective photodynamic potential.
Long Y Chiang, Prashant A Padmawar, Joy E Rogers-Haley, Grace So, Taizoon Canteenwala, Sammaiah Thota, Loon-Seng Tan, Kenneth Pritzker, Ying-Ying Huang, Sulbha K Sharma, Divya Balachandran Kurup, Michael R Hamblin, Brian Wilson, Augustine Urbas
{"title":"Synthesis and characterization of highly photoresponsive fullerenyl dyads with a close chromophore antenna-C(60) contact and effective photodynamic potential.","authors":"Long Y Chiang, Prashant A Padmawar, Joy E Rogers-Haley, Grace So, Taizoon Canteenwala, Sammaiah Thota, Loon-Seng Tan, Kenneth Pritzker, Ying-Ying Huang, Sulbha K Sharma, Divya Balachandran Kurup, Michael R Hamblin, Brian Wilson, Augustine Urbas","doi":"10.1039/C0JM00037J","DOIUrl":null,"url":null,"abstract":"We report the synthesis of a new class of photoresponsive C(60)-DCE-diphenylaminofluorene nanostructures and their intramolecular photoinduced energy and electron transfer phenomena. Structural modification was made by chemical conversion of the keto group in C(60)(>DPAF-C(n)) to a stronger electron-withdrawing 1,1-dicyanoethylenyl (DCE) unit leading to C(60)(>CPAF-C(n)) with an increased electronic polarization of the molecule. The modification also led to a large bathochromic shift of the major band in visible spectrum giving measureable absorption up to 600 nm and extended the photoresponsive capability of C(60)-DCE-DPAF nanostructures to longer red wavelengths than C(60)(>DPAF-C(n)). Accordingly, C(60)(>CPAF-C(n)) may allow 2γ-PDT using a light wavelength of 1000-1200 nm for enhanced tissue penetration depth. Production efficiency of singlet oxygen by closely related C(60)(>DPAF-C(2) (M)) was found to be comparable with that of tetraphenylporphyrin photosensitizer. Remarkably, the (1)O(2) quantum yield of C(60)(>CPAF-C(2) (M)) was found to be nearly 6-fold higher than that of C(60)(>DPAF-C(2) (M)), demonstrating the large light-harvesting enhancement of the CPAF-C(2) (M) moiety and leading to more efficient triplet state generation of the C(60)> cage moiety. This led to highly effective killing of HeLa cells by C(60)(>CPAF-C(2) (M)) via photodynamic therapy (200 J cm(-2) white light). We interpret the phenomena in terms of the contributions by the extended π-conjugation and stronger electron-withdrawing capability associated with the 1,1-dicyanoethylenyl group compared to that of the keto group.","PeriodicalId":16297,"journal":{"name":"Journal of Materials Chemistry","volume":"20 25","pages":"5280-5293"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1039/C0JM00037J","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/C0JM00037J","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49
Abstract
We report the synthesis of a new class of photoresponsive C(60)-DCE-diphenylaminofluorene nanostructures and their intramolecular photoinduced energy and electron transfer phenomena. Structural modification was made by chemical conversion of the keto group in C(60)(>DPAF-C(n)) to a stronger electron-withdrawing 1,1-dicyanoethylenyl (DCE) unit leading to C(60)(>CPAF-C(n)) with an increased electronic polarization of the molecule. The modification also led to a large bathochromic shift of the major band in visible spectrum giving measureable absorption up to 600 nm and extended the photoresponsive capability of C(60)-DCE-DPAF nanostructures to longer red wavelengths than C(60)(>DPAF-C(n)). Accordingly, C(60)(>CPAF-C(n)) may allow 2γ-PDT using a light wavelength of 1000-1200 nm for enhanced tissue penetration depth. Production efficiency of singlet oxygen by closely related C(60)(>DPAF-C(2) (M)) was found to be comparable with that of tetraphenylporphyrin photosensitizer. Remarkably, the (1)O(2) quantum yield of C(60)(>CPAF-C(2) (M)) was found to be nearly 6-fold higher than that of C(60)(>DPAF-C(2) (M)), demonstrating the large light-harvesting enhancement of the CPAF-C(2) (M) moiety and leading to more efficient triplet state generation of the C(60)> cage moiety. This led to highly effective killing of HeLa cells by C(60)(>CPAF-C(2) (M)) via photodynamic therapy (200 J cm(-2) white light). We interpret the phenomena in terms of the contributions by the extended π-conjugation and stronger electron-withdrawing capability associated with the 1,1-dicyanoethylenyl group compared to that of the keto group.