{"title":"The adaptor protein SH2B1β reduces hydrogen peroxide-induced cell death in PC12 cells and hippocampal neurons.","authors":"Wan-Chen Lu, Chien-Jen Chen, Hui-Chien Hsu, Hsin-Ling Hsu, Linyi Chen","doi":"10.1186/1750-2187-5-17","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>SH2B1β is a signaling adaptor protein that has been shown to promote neuronal differentiation in PC12 cells and is necessary for the survival of sympathetic neurons. However, the mechanism by which SH2B1β may influence cell survival is not known.</p><p><strong>Results: </strong>In this study, we investigated the role of SH2B1β in oxidative stress-induced cell death. Our results suggest that overexpressing SH2B1β reduced H2O2-induced, caspase 3-dependent apoptosis in PC12 cells and hippocampal neurons. In response to H2O2, overexpressing SH2B1β enhanced PI3K (phosphatidylinositol 3-kinas)-AKT (protein kinase B) and MEK (MAPK/ERK kinase)-extracellular-signal regulated kinases 1 and 2 (ERK1/2) signaling pathways. We further demonstrated that SH2B1β was able to reduce H2O2-induced nuclear localization of FoxO1 and 3a transcription factors, which lie downstream of PI3K-AKT and MEK-ERK1/2 pathways. Moreover, overexpressing SH2B1β reduced the expression of Fas ligand (FasL), one of the target genes of FoxOs.</p><p><strong>Conclusions: </strong>Overexpressing the adaptor protein SH2B1β enhanced H2O2-induced PI3K-AKT and MEK-ERK1/2 signaling, reduced nucleus-localized FoxOs and the expression of a pro-apoptotic gene, FasL.</p>","PeriodicalId":35051,"journal":{"name":"Journal of Molecular Signaling","volume":"5 ","pages":"17"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1750-2187-5-17","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Signaling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/1750-2187-5-17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 18
Abstract
Background: SH2B1β is a signaling adaptor protein that has been shown to promote neuronal differentiation in PC12 cells and is necessary for the survival of sympathetic neurons. However, the mechanism by which SH2B1β may influence cell survival is not known.
Results: In this study, we investigated the role of SH2B1β in oxidative stress-induced cell death. Our results suggest that overexpressing SH2B1β reduced H2O2-induced, caspase 3-dependent apoptosis in PC12 cells and hippocampal neurons. In response to H2O2, overexpressing SH2B1β enhanced PI3K (phosphatidylinositol 3-kinas)-AKT (protein kinase B) and MEK (MAPK/ERK kinase)-extracellular-signal regulated kinases 1 and 2 (ERK1/2) signaling pathways. We further demonstrated that SH2B1β was able to reduce H2O2-induced nuclear localization of FoxO1 and 3a transcription factors, which lie downstream of PI3K-AKT and MEK-ERK1/2 pathways. Moreover, overexpressing SH2B1β reduced the expression of Fas ligand (FasL), one of the target genes of FoxOs.
Conclusions: Overexpressing the adaptor protein SH2B1β enhanced H2O2-induced PI3K-AKT and MEK-ERK1/2 signaling, reduced nucleus-localized FoxOs and the expression of a pro-apoptotic gene, FasL.
期刊介绍:
Journal of Molecular Signaling is an open access, peer-reviewed online journal that encompasses all aspects of molecular signaling. Molecular signaling is an exponentially growing field that encompasses different molecular aspects of cell signaling underlying normal and pathological conditions. Specifically, the research area of the journal is on the normal or aberrant molecular mechanisms involving receptors, G-proteins, kinases, phosphatases, and transcription factors in regulating cell proliferation, differentiation, apoptosis, and oncogenesis in mammalian cells. This area also covers the genetic and epigenetic changes that modulate the signaling properties of cells and the resultant physiological conditions.