Shape L'Âne Rouge: Sliding Wavelets for Indexing and Retrieval.

Adrian Peter, Anand Rangarajan, Jeffrey Ho
{"title":"Shape L'Âne Rouge: Sliding Wavelets for Indexing and Retrieval.","authors":"Adrian Peter, Anand Rangarajan, Jeffrey Ho","doi":"10.1109/CVPR.2008.4587838","DOIUrl":null,"url":null,"abstract":"<p><p>Shape representation and retrieval of stored shape models are becoming increasingly more prominent in fields such as medical imaging, molecular biology and remote sensing. We present a novel framework that directly addresses the necessity for a rich and compressible shape representation, while simultaneously providing an accurate method to index stored shapes. The core idea is to represent point-set shapes as the square root of probability densities expanded in a wavelet basis. We then use this representation to develop a natural similarity metric that respects the geometry of these probability distributions, i.e. under the wavelet expansion, densities are points on a unit hypersphere and the distance between densities is given by the separating arc length. The process uses a linear assignment solver for non-rigid alignment between densities prior to matching; this has the connotation of \"sliding\" wavelet coefficients akin to the sliding block puzzle L'Âne Rouge. We illustrate the utility of this framework by matching shapes from the MPEG-7 data set and provide comparisons to other similarity measures, such as Euclidean distance shape distributions.</p>","PeriodicalId":74560,"journal":{"name":"Proceedings. IEEE Computer Society Conference on Computer Vision and Pattern Recognition","volume":"2008 4587838","pages":"4587838"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2921664/pdf/nihms223534.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Computer Society Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2008.4587838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Shape representation and retrieval of stored shape models are becoming increasingly more prominent in fields such as medical imaging, molecular biology and remote sensing. We present a novel framework that directly addresses the necessity for a rich and compressible shape representation, while simultaneously providing an accurate method to index stored shapes. The core idea is to represent point-set shapes as the square root of probability densities expanded in a wavelet basis. We then use this representation to develop a natural similarity metric that respects the geometry of these probability distributions, i.e. under the wavelet expansion, densities are points on a unit hypersphere and the distance between densities is given by the separating arc length. The process uses a linear assignment solver for non-rigid alignment between densities prior to matching; this has the connotation of "sliding" wavelet coefficients akin to the sliding block puzzle L'Âne Rouge. We illustrate the utility of this framework by matching shapes from the MPEG-7 data set and provide comparisons to other similarity measures, such as Euclidean distance shape distributions.

Shape L'Âne Rouge:用于索引和检索的滑动小波
在医学成像、分子生物学和遥感等领域,形状表示和存储形状模型的检索正变得越来越重要。我们提出了一个新颖的框架,直接解决了丰富且可压缩的形状表示的必要性,同时提供了一种精确的方法来索引存储的形状。其核心思想是将点集形状表示为在小波基础上扩展的概率密度的平方根。然后,我们使用这种表示方法来开发一种自然的相似度量,这种方法尊重这些概率分布的几何形状,即在小波展开下,密度是单位超球上的点,密度之间的距离由分离弧长给出。在匹配之前,该过程使用线性赋值求解器进行密度之间的非刚性对齐;这具有 "滑动 "小波系数的含义,类似于滑动块拼图《L'Âne Rouge》。我们通过对 MPEG-7 数据集中的形状进行匹配来说明这一框架的实用性,并与欧氏距离形状分布等其他相似性测量方法进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
43.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信