{"title":"Enhanced Bounding Techniques to Reduce the Protein Conformational Search Space.","authors":"Scott R McAllister, Christodoulos A Floudas","doi":"10.1080/10556780902753486","DOIUrl":null,"url":null,"abstract":"<p><p>The complexity and enormous size of the conformational space that must be explored for the protein tertiary structure prediction problem has led to the development of a wide assortment of algorithmic approaches. In this study, we apply state-of-the-art tertiary structure prediction algorithms and instead focus on the development of bounding techniques to reduce the conformational search space. Dihedral angle bounds on the ϕ and ψ angles are established based on the predicted secondary structure and studies of the allowed regions of ϕ/ψ space. Distance bounds are developed based on predicted secondary structure information (including β-sheet topology predictions) to further reduce the search space. This bounding strategy is entirely independent of the degree of homology between the target protein and the database of proteins with experimentally-determined structures. The proposed approach is applied to the structure prediction of protein G as an illustrative example, yielding a significantly higher number of near-native protein tertiary structure predictions.</p>","PeriodicalId":54673,"journal":{"name":"Optimization Methods & Software","volume":"24 4-5","pages":"837-855"},"PeriodicalIF":1.4000,"publicationDate":"2009-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10556780902753486","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods & Software","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10556780902753486","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 5
Abstract
The complexity and enormous size of the conformational space that must be explored for the protein tertiary structure prediction problem has led to the development of a wide assortment of algorithmic approaches. In this study, we apply state-of-the-art tertiary structure prediction algorithms and instead focus on the development of bounding techniques to reduce the conformational search space. Dihedral angle bounds on the ϕ and ψ angles are established based on the predicted secondary structure and studies of the allowed regions of ϕ/ψ space. Distance bounds are developed based on predicted secondary structure information (including β-sheet topology predictions) to further reduce the search space. This bounding strategy is entirely independent of the degree of homology between the target protein and the database of proteins with experimentally-determined structures. The proposed approach is applied to the structure prediction of protein G as an illustrative example, yielding a significantly higher number of near-native protein tertiary structure predictions.
期刊介绍:
Optimization Methods and Software
publishes refereed papers on the latest developments in the theory and realization of optimization methods, with particular emphasis on the interface between software development and algorithm design.
Topics include:
Theory, implementation and performance evaluation of algorithms and computer codes for linear, nonlinear, discrete, stochastic optimization and optimal control. This includes in particular conic, semi-definite, mixed integer, network, non-smooth, multi-objective and global optimization by deterministic or nondeterministic algorithms.
Algorithms and software for complementarity, variational inequalities and equilibrium problems, and also for solving inverse problems, systems of nonlinear equations and the numerical study of parameter dependent operators.
Various aspects of efficient and user-friendly implementations: e.g. automatic differentiation, massively parallel optimization, distributed computing, on-line algorithms, error sensitivity and validity analysis, problem scaling, stopping criteria and symbolic numeric interfaces.
Theoretical studies with clear potential for applications and successful applications of specially adapted optimization methods and software to fields like engineering, machine learning, data mining, economics, finance, biology, or medicine. These submissions should not consist solely of the straightforward use of standard optimization techniques.