{"title":"Enhanced Bounding Techniques to Reduce the Protein Conformational Search Space.","authors":"Scott R McAllister, Christodoulos A Floudas","doi":"10.1080/10556780902753486","DOIUrl":null,"url":null,"abstract":"<p><p>The complexity and enormous size of the conformational space that must be explored for the protein tertiary structure prediction problem has led to the development of a wide assortment of algorithmic approaches. In this study, we apply state-of-the-art tertiary structure prediction algorithms and instead focus on the development of bounding techniques to reduce the conformational search space. Dihedral angle bounds on the ϕ and ψ angles are established based on the predicted secondary structure and studies of the allowed regions of ϕ/ψ space. Distance bounds are developed based on predicted secondary structure information (including β-sheet topology predictions) to further reduce the search space. This bounding strategy is entirely independent of the degree of homology between the target protein and the database of proteins with experimentally-determined structures. The proposed approach is applied to the structure prediction of protein G as an illustrative example, yielding a significantly higher number of near-native protein tertiary structure predictions.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2009-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10556780902753486","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10556780902753486","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5
Abstract
The complexity and enormous size of the conformational space that must be explored for the protein tertiary structure prediction problem has led to the development of a wide assortment of algorithmic approaches. In this study, we apply state-of-the-art tertiary structure prediction algorithms and instead focus on the development of bounding techniques to reduce the conformational search space. Dihedral angle bounds on the ϕ and ψ angles are established based on the predicted secondary structure and studies of the allowed regions of ϕ/ψ space. Distance bounds are developed based on predicted secondary structure information (including β-sheet topology predictions) to further reduce the search space. This bounding strategy is entirely independent of the degree of homology between the target protein and the database of proteins with experimentally-determined structures. The proposed approach is applied to the structure prediction of protein G as an illustrative example, yielding a significantly higher number of near-native protein tertiary structure predictions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.