Understanding the Evolutionary Process of Grammatical Evolution Neural Networks for Feature Selection in Genetic Epidemiology.

Alison A Motsinger, David M Reif, Scott M Dudek, Marylyn D Ritchie
{"title":"Understanding the Evolutionary Process of Grammatical Evolution Neural Networks for Feature Selection in Genetic Epidemiology.","authors":"Alison A Motsinger, David M Reif, Scott M Dudek, Marylyn D Ritchie","doi":"10.1109/CIBCB.2006.330945","DOIUrl":null,"url":null,"abstract":"<p><p>The identification of genetic factors/features that predict complex diseases is an important goal of human genetics. The commonality of gene-gene interactions in the underlying genetic architecture of common diseases presents a daunting analytical challenge. Previously, we introduced a grammatical evolution neural network (GENN) approach that has high power to detect such interactions in the absence of any marginal main effects. While the success of this method is encouraging, it elicits questions regarding the evolutionary process of the algorithm itself and the feasibility of scaling the method to account for the immense dimensionality of datasets with enormous numbers of features. When the features of interest show no main effects, how is GENN able to build correct models? How and when should evolutionary parameters be adjusted according to the scale of a particular dataset? In the current study, we monitor the performance of GENN during its evolutionary process using different population sizes and numbers of generations. We also compare the evolutionary characteristics of GENN to that of a random search neural network strategy to better understand the benefits provided by the evolutionary learning process-including advantages with respect to chromosome size and the representation of functional versus non-functional features within the models generated by the two approaches. Finally, we apply lessons from the characterization of GENN to analyses of datasets containing increasing numbers of features to demonstrate the scalability of the method.</p>","PeriodicalId":88962,"journal":{"name":"Proceedings of the ... IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology : CIBCB. IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"2006 ","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2903766/pdf/nihms-160134.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology : CIBCB. IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2006.330945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The identification of genetic factors/features that predict complex diseases is an important goal of human genetics. The commonality of gene-gene interactions in the underlying genetic architecture of common diseases presents a daunting analytical challenge. Previously, we introduced a grammatical evolution neural network (GENN) approach that has high power to detect such interactions in the absence of any marginal main effects. While the success of this method is encouraging, it elicits questions regarding the evolutionary process of the algorithm itself and the feasibility of scaling the method to account for the immense dimensionality of datasets with enormous numbers of features. When the features of interest show no main effects, how is GENN able to build correct models? How and when should evolutionary parameters be adjusted according to the scale of a particular dataset? In the current study, we monitor the performance of GENN during its evolutionary process using different population sizes and numbers of generations. We also compare the evolutionary characteristics of GENN to that of a random search neural network strategy to better understand the benefits provided by the evolutionary learning process-including advantages with respect to chromosome size and the representation of functional versus non-functional features within the models generated by the two approaches. Finally, we apply lessons from the characterization of GENN to analyses of datasets containing increasing numbers of features to demonstrate the scalability of the method.

理解遗传流行病学中用于特征选择的语法进化神经网络的进化过程。
识别预测复杂疾病的遗传因素/特征是人类遗传学的一个重要目标。在常见疾病的潜在遗传结构中,基因-基因相互作用的共性是一个令人生畏的分析挑战。之前,我们介绍了一种语法进化神经网络(GENN)方法,该方法在没有任何边际主效应的情况下具有很高的检测能力。虽然这种方法的成功令人鼓舞,但它引发了关于算法本身的进化过程以及扩展该方法以考虑具有大量特征的数据集的巨大维度的可行性的问题。当感兴趣的特征没有显示出主要影响时,GENN如何能够建立正确的模型?应该如何以及何时根据特定数据集的规模调整进化参数?在目前的研究中,我们使用不同的种群规模和世代数量来监测GENN在进化过程中的表现。我们还将GENN的进化特征与随机搜索神经网络策略的进化特征进行了比较,以更好地理解进化学习过程所提供的好处,包括染色体大小方面的优势,以及两种方法生成的模型中功能特征与非功能特征的表示。最后,我们将GENN表征的经验教训应用于包含越来越多特征的数据集的分析,以证明该方法的可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信