Validation of quantitative magnetic resonance for the determination of body composition of mice.

A S Jones, M S Johnson, T R Nagy
{"title":"Validation of quantitative magnetic resonance for the determination of body composition of mice.","authors":"A S Jones,&nbsp;M S Johnson,&nbsp;T R Nagy","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>OBJECTIVE: The aim of this study was to assess the precision and accuracy of a quantitative magnetic resonance (QMR) instrument for measuring body composition in live, non-anesthetized mice. METHODS: Forty-eight mice of varying strains, ages and body weights (15.3 to 50.2g) were scanned three times each in the QMR instrument. Animals were killed and chemical carcass analysis performed for comparison. Precision was assessed as the coefficient of variation (CV) for the triplicate scans and accuracy was determined by comparing the first QMR data with the chemical analysis. Prediction equations were generated by linear regression analysis and used in a cross-validation study in which 26 mice were scanned once each, killed, and chemical carcass analysis performed. RESULTS: The mean CV was 1.58% for fat mass (FM) and 0.78% for lean-tissue mass (LTM). QMR significantly (P<0.01) overestimated FM (7.76±5.93 vs. 6.03±5.17g) and underestimated LTM (20.73±6.19 vs. 22.48±6.75g) when compared with chemical carcass analysis. A strong relationship between QMR and chemical data (r(2)=0.99 and r(2)=0.97 for fat and LTM respectively; P<0.0001) allowed for the generation of correction equations that were applied to QMR data in the cross-validation study. There was no significant difference between data predicted from QMR and chemical carcass data for FM and LTM (P=0.15 and 0.10 respectively). CONCLUSION: The QMR instrument showed excellent precision and data was highly correlated with chemical carcass analysis. This combined with QMR's speed for whole animal analysis (95 seconds) make it a highly feasible and useful method for the determination of body composition in live, non-anesthetized mice.</p>","PeriodicalId":87474,"journal":{"name":"International journal of body composition research","volume":"7 2","pages":"67-72"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2868277/pdf/nihms133793.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of body composition research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

OBJECTIVE: The aim of this study was to assess the precision and accuracy of a quantitative magnetic resonance (QMR) instrument for measuring body composition in live, non-anesthetized mice. METHODS: Forty-eight mice of varying strains, ages and body weights (15.3 to 50.2g) were scanned three times each in the QMR instrument. Animals were killed and chemical carcass analysis performed for comparison. Precision was assessed as the coefficient of variation (CV) for the triplicate scans and accuracy was determined by comparing the first QMR data with the chemical analysis. Prediction equations were generated by linear regression analysis and used in a cross-validation study in which 26 mice were scanned once each, killed, and chemical carcass analysis performed. RESULTS: The mean CV was 1.58% for fat mass (FM) and 0.78% for lean-tissue mass (LTM). QMR significantly (P<0.01) overestimated FM (7.76±5.93 vs. 6.03±5.17g) and underestimated LTM (20.73±6.19 vs. 22.48±6.75g) when compared with chemical carcass analysis. A strong relationship between QMR and chemical data (r(2)=0.99 and r(2)=0.97 for fat and LTM respectively; P<0.0001) allowed for the generation of correction equations that were applied to QMR data in the cross-validation study. There was no significant difference between data predicted from QMR and chemical carcass data for FM and LTM (P=0.15 and 0.10 respectively). CONCLUSION: The QMR instrument showed excellent precision and data was highly correlated with chemical carcass analysis. This combined with QMR's speed for whole animal analysis (95 seconds) make it a highly feasible and useful method for the determination of body composition in live, non-anesthetized mice.

定量磁共振测定小鼠体成分方法的验证。
目的:本研究的目的是评估定量磁共振(QMR)仪器测量活体非麻醉小鼠身体成分的精度和准确性。方法:对48只不同品系、年龄、体重(15.3 ~ 50.2g)的小鼠进行QMR扫描,每只扫描3次。宰杀动物,进行化学尸体分析比较。精密度通过三次扫描的变异系数(CV)来评估,准确度通过比较第一次QMR数据和化学分析来确定。预测方程通过线性回归分析生成,并用于交叉验证研究,其中26只小鼠每只扫描一次,杀死并进行化学胴体分析。结果:脂肪质量(FM)的平均CV为1.58%,瘦组织质量(LTM)的平均CV为0.78%。QMR显著(P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信