DNA Motif Detection Using Particle Swarm Optimization and Expectation-Maximization.

C T Hardin, Eric C Rouchka
{"title":"DNA Motif Detection Using Particle Swarm Optimization and Expectation-Maximization.","authors":"C T Hardin, Eric C Rouchka","doi":"10.1109/SIS.2005.1501620","DOIUrl":null,"url":null,"abstract":"<p><p>Motif discovery, the process of discovering a meaningful pattern of nucleotides or amino acids that is shared by two or more molecules, is an important part of the study of gene function. In this paper, we propose a hybrid motif discovery approach based upon a combination of Particle Swarm Optimization (PSO) and the Expectation-Maximization (EM) algorithm. In the proposed algorithm, we use PSO to generate a seed for the EM algorithm.</p>","PeriodicalId":88961,"journal":{"name":"Proceedings of the ... IEEE Swarm Intelligence Symposium. IEEE Swarm Intelligence Symposium","volume":"2005 ","pages":"181-184"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2861583/pdf/nihms137489.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IEEE Swarm Intelligence Symposium. IEEE Swarm Intelligence Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIS.2005.1501620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motif discovery, the process of discovering a meaningful pattern of nucleotides or amino acids that is shared by two or more molecules, is an important part of the study of gene function. In this paper, we propose a hybrid motif discovery approach based upon a combination of Particle Swarm Optimization (PSO) and the Expectation-Maximization (EM) algorithm. In the proposed algorithm, we use PSO to generate a seed for the EM algorithm.

基于粒子群优化和期望最大化的DNA基序检测。
基序发现是发现两个或多个分子共有的核苷酸或氨基酸的有意义的模式的过程,是基因功能研究的重要组成部分。本文提出了一种基于粒子群优化(PSO)和期望最大化(EM)算法相结合的混合基序发现方法。在提出的算法中,我们使用粒子群算法为EM算法生成种子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信