{"title":"Fabrication and functional characterization of goldnanoconjugates for potential application in ovarian cancer.","authors":"Chitta Ranjan Patra, Resham Bhattacharya, Priyabrata Mukherjee","doi":"10.1039/b913224d","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper we report the surface modification and functional characterization of a gold nanoparticle-based drug delivery system for potential therapeutic application in ovarian cancer. It is currently recognized that nanotechnology may play a pivotal role in drug delivery by increasing efficacy and reducing toxicity of anti-cancer drugs. Here, we report the fabrication of a gold nanoparticles (AuNP) based drug delivery system consisting of folic acid (FA), mercapto-polyethylene glycol (PEG-SH) with a molecular weight of 2000 (designated as PSH2-2K or PSH) and cis-platin (CP) [Au-PSH-CP-FA] for potential therapeutic application in ovarian cancer. Fabrication is done in a three steps incubation process at room temperature (RT). The gold nanoconjugates are characterized with several physico-chemical techniques such as UV-Vis (UV-Visible spectroscopy), TEM (Transmission electron microscopy), ICP (Inductively coupled plasma) and radioactivity measurement with a scintillation counter. Attachment and release profiles of FA from the gold nanoconjugates are performed using (3)H-labelled FA ((3)H-FA). The expressions of folate receptor (FR) for ovarian cancer cell lines (OV-167, OVCAR-5), human umbilical vein endothelial cells (HUVEC) and ovarian surface epithelial (OSE) cells are determined by FACS analysis. Quantitation of platinum content in the nanoconjugates and its release profile is determined by platinum (Pt) analysis using ICP-MS. Biological functional characterization using in vitro proliferation assay demonstrates that Au-PSH-CP-FA not only retains the cytotoxic effect of CP, but it protects the normal cells from the cytotoxic insult, while enhancing the cytotoxic effect on the tumor cells. In future, this strategy may be utilized as a strategy for the treatment of ovarian cancers and may overcome the core side effect issues in anticancer therapy.</p>","PeriodicalId":16297,"journal":{"name":"Journal of Materials Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2860188/pdf/nihms-194858.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/b913224d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we report the surface modification and functional characterization of a gold nanoparticle-based drug delivery system for potential therapeutic application in ovarian cancer. It is currently recognized that nanotechnology may play a pivotal role in drug delivery by increasing efficacy and reducing toxicity of anti-cancer drugs. Here, we report the fabrication of a gold nanoparticles (AuNP) based drug delivery system consisting of folic acid (FA), mercapto-polyethylene glycol (PEG-SH) with a molecular weight of 2000 (designated as PSH2-2K or PSH) and cis-platin (CP) [Au-PSH-CP-FA] for potential therapeutic application in ovarian cancer. Fabrication is done in a three steps incubation process at room temperature (RT). The gold nanoconjugates are characterized with several physico-chemical techniques such as UV-Vis (UV-Visible spectroscopy), TEM (Transmission electron microscopy), ICP (Inductively coupled plasma) and radioactivity measurement with a scintillation counter. Attachment and release profiles of FA from the gold nanoconjugates are performed using (3)H-labelled FA ((3)H-FA). The expressions of folate receptor (FR) for ovarian cancer cell lines (OV-167, OVCAR-5), human umbilical vein endothelial cells (HUVEC) and ovarian surface epithelial (OSE) cells are determined by FACS analysis. Quantitation of platinum content in the nanoconjugates and its release profile is determined by platinum (Pt) analysis using ICP-MS. Biological functional characterization using in vitro proliferation assay demonstrates that Au-PSH-CP-FA not only retains the cytotoxic effect of CP, but it protects the normal cells from the cytotoxic insult, while enhancing the cytotoxic effect on the tumor cells. In future, this strategy may be utilized as a strategy for the treatment of ovarian cancers and may overcome the core side effect issues in anticancer therapy.