{"title":"AKAR2-AKAP12 fusion protein \"biosenses\" dynamic phosphorylation and localization of a GPCR-based scaffold.","authors":"Jiangchuan Tao, Hsien-Yu Wang, Craig C Malbon","doi":"10.1186/1750-2187-5-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The cAMP-dependent protein kinase A (PKA) plays a pivotal role in virtually all cells, there being a multitude of important target molecules that are substrates for PKA in cell signaling. The spatial-temporal dynamics of PKA activation in living cells has been made accessible by the development of clever biosensors that yield a FRET signal in response to the phosphorylation by PKA. AKAR2 is genetically encoded fluorescent probe that acts as a biosensor for PKA activation. AKAP12 is a scaffold that docks PKA, G-protein-coupled receptors, cell membrane negatively-charged phospholipids, and catalyzes receptor resensitization and recycling. In the current work, the AKAR2 biosensor was fused to the N-terminus of AKAP12 to evaluate its ability to function and report on dynamic phosphorylation of the AKAP12 scaffold.</p><p><strong>Results: </strong>AKAR2-AKAP12 can be expressed in mammalian cells, is fully functional, and reveals the spatial-temporal activation of AKAP12 undergoing phosphorylation by PKA in response to beta-adrenergic activation in human epidermoid carcinoma A431 cells.</p><p><strong>Conclusion: </strong>The dynamic phosphorylation of AKAP12 \"biosensed\" by AKAR2-AKAP12 reveals the scaffold in association with the cell membrane, undergoing rapid phosphorylation by PKA. The perinuclear, cytoplasmic accumulation of phosphorylated scaffold reflects the phosphorylated, PKA-activated form of AKAP12, which catalyzes the resensitization and recycling of desensitized, internalized G-protein-coupled receptors.</p>","PeriodicalId":35051,"journal":{"name":"Journal of Molecular Signaling","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1750-2187-5-3","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Signaling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/1750-2187-5-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 10
Abstract
Background: The cAMP-dependent protein kinase A (PKA) plays a pivotal role in virtually all cells, there being a multitude of important target molecules that are substrates for PKA in cell signaling. The spatial-temporal dynamics of PKA activation in living cells has been made accessible by the development of clever biosensors that yield a FRET signal in response to the phosphorylation by PKA. AKAR2 is genetically encoded fluorescent probe that acts as a biosensor for PKA activation. AKAP12 is a scaffold that docks PKA, G-protein-coupled receptors, cell membrane negatively-charged phospholipids, and catalyzes receptor resensitization and recycling. In the current work, the AKAR2 biosensor was fused to the N-terminus of AKAP12 to evaluate its ability to function and report on dynamic phosphorylation of the AKAP12 scaffold.
Results: AKAR2-AKAP12 can be expressed in mammalian cells, is fully functional, and reveals the spatial-temporal activation of AKAP12 undergoing phosphorylation by PKA in response to beta-adrenergic activation in human epidermoid carcinoma A431 cells.
Conclusion: The dynamic phosphorylation of AKAP12 "biosensed" by AKAR2-AKAP12 reveals the scaffold in association with the cell membrane, undergoing rapid phosphorylation by PKA. The perinuclear, cytoplasmic accumulation of phosphorylated scaffold reflects the phosphorylated, PKA-activated form of AKAP12, which catalyzes the resensitization and recycling of desensitized, internalized G-protein-coupled receptors.
期刊介绍:
Journal of Molecular Signaling is an open access, peer-reviewed online journal that encompasses all aspects of molecular signaling. Molecular signaling is an exponentially growing field that encompasses different molecular aspects of cell signaling underlying normal and pathological conditions. Specifically, the research area of the journal is on the normal or aberrant molecular mechanisms involving receptors, G-proteins, kinases, phosphatases, and transcription factors in regulating cell proliferation, differentiation, apoptosis, and oncogenesis in mammalian cells. This area also covers the genetic and epigenetic changes that modulate the signaling properties of cells and the resultant physiological conditions.